The potential of graphene-based materials consisting of one or a few layers of graphite for integrated electronics originates from the large room-temperature carrier mobility in these systems (approximately 10,000 cm2 V(-1) s(-1)). However, the realization of electronic devices such as field-effect transistors will require controlling and even switching off the electrical conductivity by means of gate electrodes, which is made difficult by the absence of a bandgap in the intrinsic material. Here, we demonstrate the controlled induction of an insulating state--with large suppression of the conductivity--in bilayer graphene, by using a double-gate device configuration that enables an electric field to be applied perpendicular to the plane. The dependence of the resistance on temperature and electric field, and the absence of any effect in a single-layer device, strongly suggest that the gate-induced insulating state originates from the recently predicted opening of a bandgap between valence and conduction bands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat2082 | DOI Listing |
ACS Nano
January 2025
Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark.
Superlattices from twisted graphene mono- and bilayer systems give rise to on-demand many-body states such as Mott insulators and unconventional superconductors. These phenomena are ascribed to a combination of flat bands and strong Coulomb interactions. However, a comprehensive understanding is lacking because the low-energy band structure strongly changes when an electric field is applied to vary the electron filling.
View Article and Find Full Text PDFNat Mater
August 2024
Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
The coexistence of correlated electron and hole crystals enables the realization of quantum excitonic states, capable of hosting counterflow superfluidity and topological orders with long-range quantum entanglement. Here we report evidence for imbalanced electron-hole crystals in a doped Mott insulator, namely, α-RuCl, through gate-tunable non-invasive van der Waals doping from graphene. Real-space imaging via scanning tunnelling microscopy reveals two distinct charge orderings at the lower and upper Hubbard band energies, whose origin is attributed to the correlation-driven honeycomb hole crystal composed of hole-rich Ru sites and rotational-symmetry-breaking paired electron crystal composed of electron-rich Ru-Ru bonds, respectively.
View Article and Find Full Text PDFRev Sci Instrum
June 2023
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, People's Republic of China.
Semiconducting polymers inherently exhibit polydispersity in terms of molecular structure and microscopic morphology, which often results in a broad distribution of energy levels for localized electronic states. Therefore, the bulk charge mobility strongly depends on the free charge density. In this study, we propose a method to measure the charge-density-dependent bulk mobility of conjugated polymer films with widely spread localized states using a conventional field-effect transistor configuration.
View Article and Find Full Text PDFACS Nano
August 2023
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr) monolayers grown on graphene.
View Article and Find Full Text PDFNat Commun
May 2023
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of LaSrCoO (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with δ ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with δ = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!