We report on a test to assess the dynamic brain function at high temporal resolution using magnetoencephalography (MEG). The essence of the test is the measurement of the dynamic synchronous neural interactions, an essential aspect of the brain function. MEG signals were recorded from 248 axial gradiometers while 142 human subjects fixated a spot of light for 45-60 s. After fitting an autoregressive integrative moving average (ARIMA) model and taking the stationary residuals, all pairwise, zero-lag, partial cross-correlations (PCC(ij)(0)) and their z-transforms (z(ij)(0)) between i and j sensors were calculated, providing estimates of the strength and sign (positive, negative) of direct synchronous coupling at 1 ms temporal resolution. We found that subsets of z(ij)(0) successfully classified individual subjects to their respective groups (multiple sclerosis, Alzheimer's disease, schizophrenia, Sjögren's syndrome, chronic alcoholism, facial pain, healthy controls) and gave excellent external cross-validation results.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2560/4/4/001DOI Listing

Publication Analysis

Top Keywords

synchronous neural
8
neural interactions
8
brain function
8
temporal resolution
8
interactions assessed
4
assessed magnetoencephalography
4
magnetoencephalography functional
4
functional biomarker
4
biomarker brain
4
brain disorders
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!