Survival in low-oxygen environments requires adaptation of sympathorespiratory control networks located in the brain stem. The molecular mechanisms underlying adaptation are unclear. In naïve animals, acute hypoxia evokes increases in phrenic (respiratory) and splanchnic (sympathetic) nerve activities that persist after repeated challenges (long-term facilitation, LTF). In contrast, our studies show that conditioning rats to chronic hypobaric hypoxia (CHH), an environment characteristic of living at high altitude, diminishes the response to hypoxia and attenuates LTF in a time-dependent manner. Phrenic LTF decreases following 7 days of CHH, and both sympathetic and phrenic LTF disappear following 14 days of CHH. Previous studies demonstrated that GABA is released in the brain stem during hypoxia and depresses respiratory activity. Furthermore, the sensitivity of brain stem neurons to GABA is increased following prolonged hypoxia. In this study, we demonstrate that GABA(A) receptor expression changes along with the CHH-induced physiological changes. Expression of the GABA(A) receptor alpha4 subunit mRNA increases two-fold in animals conditioned to CHH for 7 days. In addition, de novo expression of delta and alpha6, a subunit normally found exclusively in the cerebellum, is observed after 14 days. Consistent with these changes, diazepam-insensitive binding sites, characteristic of GABA(A) receptors containing alpha4 and alpha6 subunits, increase in the pons. Immunohistochemistry revealed that CHH-induced GABA(A) receptor subunit expression is localized in regions of sympathorespiratory control within the pons. Our findings suggest that a GABA(A) receptor mediated-mechanism participates in adaptation of the sympathorespiratory system to hypobaric hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00339.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!