Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies of working memory load effects on human EEG power have indicated divergent effects in different frequency bands. Although gamma power typically increases with load, the load dependency of the lower frequency theta and alpha bands is uncertain. We obtained intracranial electroencephalography measurements from 1453 electrode sites in 14 epilepsy patients performing a Sternberg task, in order to characterize the anatomical distribution of load-related changes across the frequency spectrum. Gamma power increases occurred throughout the brain, but were most common in the occipital lobe. In the theta and alpha bands, both increases and decreases were observed, but with different anatomical distributions. Increases in theta and alpha power were most prevalent in frontal midline cortex. Decreases were most commonly observed in occipital cortex, colocalized with increases in the gamma range, but were also detected in lateral frontal and parietal regions. Spatial overlap with group functional magnetic resonance imaging results was minimal except in the precentral gyrus. These findings suggest that power in any given frequency band is not a unitary phenomenon; rather, reactivity in the same frequency band varies in different brain regions, and may relate to the engagement or inhibition of a given area in a cognitive task.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474453 | PMC |
http://dx.doi.org/10.1093/cercor/bhm213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!