Background: Rad (Ras associated with diabetes) GTPase is the prototypic member of a subfamily of Ras-related small G proteins. The aim of the present study was to define whether Rad plays an important role in mediating cardiac hypertrophy.
Methods And Results: We document for the first time that levels of Rad mRNA and protein were decreased significantly in human failing hearts (n=10) compared with normal hearts (n=3; P<0.01). Similarly, Rad expression was decreased significantly in cardiac hypertrophy induced by pressure overload and in cultured cardiomyocytes with hypertrophy induced by 10 micromol/L phenylephrine. Gain and loss of Rad function in cardiomyocytes significantly inhibited and increased phenylephrine-induced hypertrophy, respectively. In addition, activation of calcium-calmodulin-dependent kinase II (CaMKII), a strong inducer of cardiac hypertrophy, was significantly inhibited by Rad overexpression. Conversely, downregulation of CaMKIIdelta by RNA interference technology attenuated the phenylephrine-induced hypertrophic response in cardiomyocytes in which Rad was also knocked down. To further elucidate the potential role of Rad in vivo, we generated Rad-deficient mice and demonstrated that they were more susceptible to cardiac hypertrophy associated with increased CaMKII phosphorylation than wild-type littermate controls.
Conclusions: The present data document for the first time that Rad is a novel mediator that inhibits cardiac hypertrophy through the CaMKII pathway. The present study will have significant implications for understanding the mechanisms of cardiac hypertrophy and setting the basis for the development of new strategies for treatment of cardiac hypertrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207362 | PMC |
http://dx.doi.org/10.1161/CIRCULATIONAHA.107.707257 | DOI Listing |
PLoS One
January 2025
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America.
Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.
View Article and Find Full Text PDFAsian J Transfus Sci
September 2022
Department of Zoology, CCS HAU, Hisar, Haryana, India.
Context: Hemoglobinopathies are the most common heterogeneous group of monogenetic disorder in the world and its prevalence varies with geographical regions. India is developing country and many studies show a significant burden of hemoglobinopathies in India.
Aims: The aim of the present study was to check the prevalence of various hemoglobinopathies in anemic subjects using high-performance liquid chromatography (HPLC) method in Pune region which has multiple ethnic population groups from all parts of India.
Asian J Transfus Sci
May 2023
Department of Transfusion Medicine, Saveetha Medical College and Hospitals, Chennai, Tamil Nadu, India.
Hemolytic disease of foetus and newborn (HDFN) is a disease characterized by the destruction of fetal red cells by the maternal antibodies which occurs due to allo immunization in the mother by feto-maternal blood group incompatibility. The antibodies most frequently implicated in HDFN may vary depending on the demographic location under consideration. In areas where RhIg administration is available, ABO antibodies are more commonly implicated.
View Article and Find Full Text PDFGland Surg
December 2024
Department of Radiology, Ordos Central Hospital, Ordos, China.
Background: Ultrasound based radiomics prediction model can improve the differentiation ability of benign and malignant thyroid nodules to avoid overtreatment. This study evaluates the role of predictive models based on intranodular and perinodular ultrasound radiomics in distinguishing between benign and malignant thyroid nodules.
Methods: A total of 1,076 thyroid nodules were enrolled from three hospitals between 2016 and 2022, forming the training, validation and test cohorts.
Gland Surg
December 2024
Medical Imaging Department, Affiliated Hospital of Jining Medical University, Jining, China.
Background: Breast cancer is the most common malignant tumor among women, with an increasing incidence each year. The subtypes of human epidermal growth factor receptor 2 (HER2)-negative breast cancer, classified as HER2-low and HER2-zero based on HER2 receptor expression, show differences in clinical characteristics, therapeutic approaches, and prognoses. Distinguishing between these subtypes is clinically valuable as it can impact treatment strategies, including the use of next-generation antibody-drug conjugates (ADCs) targeting HER2-low tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!