DNA damage response (DDR) pathways maintain genomic stability. A 657del5 mutation of NBS1, a key DDR component, causing the rare cancer-predisposing Nijmegen breakage syndrome has been reported nearly exclusively in Slavic populations. In this study, we describe the first identification in a Japanese population of an unprecedented type of heterozygous NBS1 mutant, termed IVS11+2insT, lacking the MRE11- and ATM-binding site at the COOH terminus. Profoundly defective in crucial binding to MRE11, MDC1, BRCA1, and wild-type NBS1, the mutant caused impaired ATM phosphorylation in response to low-dose irradiation in a heterozygous state. Importantly, whereas IVS11+2insT was found in only 2 (0.09%) of 2,348 control subjects, it was identified in 2% (2 of 96) of heterozygotes with gastric cancer, 0.8% (3 of 376) of those with colorectal cancer, and 0.4% (2 of 532) of those with lung cancer, which were comparable to frequencies reported for other DDR-related genes known to confer cancer susceptibility. The presence of the heterozygous IVS11+2insT mutation seemed to be associated with an increased risk for gastrointestinal cancers, with an odds ratio of 12.6 and 95% confidence interval (95% CI) of 2.05 to 132.1 (P = 0.0001). The odds ratios separately calculated for gastric and colorectal cancers were 25.0 (95% CI, 1.78-346.0) and 9.43 (95% CI, 1.08-113.1), respectively. These findings suggest that IVS11+2insT is associated with an increased risk for the development of certain types of common cancers, warranting future investigation including detailed phenotypic characterization of age of onset and penetrance in heterozygotes, as well as screening in other ethnic groups.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-1749DOI Listing

Publication Analysis

Top Keywords

nbs1 mutant
8
associated increased
8
increased risk
8
cancer
5
novel nbs1
4
heterozygous
4
nbs1 heterozygous
4
heterozygous germ
4
germ mutation
4
mutation causing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!