AI Article Synopsis

  • The enzyme IDO helps tumors escape the immune system by breaking down tryptophan, which is important for immune response and can create toxic substances.
  • Over 75% of clear cell renal cell carcinoma (RCC) tissues showed higher IDO mRNA and protein levels compared to normal kidney tissues, with low levels indicating a worse prognosis for patients.
  • Interestingly, IDO is mainly found in the endothelial cells of blood vessels feeding the tumors and not in the tumor cells themselves, suggesting it may restrict tumor growth by limiting tryptophan availability or producing harmful metabolites.

Article Abstract

Purpose: The inflammatory enzyme indoleamine 2,3-dioxygenase (IDO) participates in immune tolerance and tumor immune escape processes by degradation of the essential amino acid tryptophan and formation of toxic catabolites. Here, we analyzed the role of IDO in tumor growth and disease progression in patients with clear cell renal cell carcinoma (RCC).

Experimental Design: Expression of IDO mRNA was analyzed by quantitative reverse transcription-PCR in 55 primary and 52 metastatic RCC, along with 32 normal kidneys. Western blot and immunohistochemistry analyses were used to semiquantitatively determine IDO proteins in a subset of tumor samples, in RCC cell lines, and microvessel endothelial cells. IDO expression was correlated with expression of the proliferation marker Ki67 in tumor cells and survival of patients with tumor.

Results: More than 75% of the clear cell RCC in comparison to normal kidney contained elevated levels of IDO mRNA, which correlated with their IDO protein content. Low IDO mRNA levels in primary tumors represented an unfavorable independent prognostic factor (hazard ratio, 3.8; P = 0.016). Unexpectedly, immunohistochemical analyses revealed that IDO is nearly exclusively expressed in endothelial cells of newly formed blood vessels and is virtually absent from tumor cells, although RCC cells could principally synthesize IDO as shown by in vitro stimulation with IFN-gamma. A highly significant inverse correlation between the density of IDO-positive microvessels and the content of proliferating Ki67-positive tumor cells in primary and metastatic clear cell RCC was found (P = 0.004).

Conclusions: IDO in endothelial cells might limit the influx of tryptophan from the blood to the tumor or generate tumor-toxic metabolites, thus restricting tumor growth and contributing to survival.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-07-0942DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
clear cell
12
ido mrna
12
tumor cells
12
ido
11
tumor
9
indoleamine 23-dioxygenase
8
cells
8
survival patients
8
renal cell
8

Similar Publications

Vascularization of human islets by adaptable endothelium for durable and functional subcutaneous engraftment.

Sci Adv

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.

View Article and Find Full Text PDF

The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life.

View Article and Find Full Text PDF

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Background: Erectile dysfunction (ED) is a prevalent male sexual disorder, commonly associated with hypertension, though the underlying mechanisms remain poorly understood.

Objective: This study aims to explore the role of Fatty acid synthase (Fasn) in hypertension-induced ED and evaluate the therapeutic potential of the Fasn inhibitor C75.

Materials And Methods: Erectile function was assessed by determining the intracavernous pressure/mean arterial pressure (ICP/MAP) ratio, followed by the collection of cavernous tissue for transcriptomic and non-targeted metabolomic analyses.

View Article and Find Full Text PDF

Anisotropic structure of nanofiber hydrogel accelerates diabetic wound healing via triadic synergy of immune-angiogenic-neurogenic microenvironments.

Bioact Mater

May 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.

Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!