Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Fatty acid synthase (FAS) is overexpressed in many human cancers and is considered to be a promising target for therapy. However, in vitro use of previous generations of FAS inhibitors has been limited by severe, but reversible, anorexia in treated animals, which is thought to be related to a parallel stimulation of fatty acid oxidation by these agents. This study investigated pharmacologic inhibition of FAS using C93, a rationally designed molecule that inhibits FAS activity without affecting fatty acid oxidation in preclinical models of lung cancer.
Experimental Design: Activity of C93 on FAS and fatty acid oxidation was evaluated in cultured non-small cell lung cancer (NSCLC) cells. Antineoplastic activity of the compound, given orally or by i.p. injection, was evaluated in s.c. and orthotopic NSCLC xenografts.
Results: Our experiments confirm that C93 effectively inhibits FAS without stimulating fatty acid oxidation in lung cancer cells. More importantly, C93 significantly inhibits the growth of both s.c. and orthotopic xenograft tumors from human NSCLC cell lines without causing anorexia and weight loss in the treated animals.
Conclusions: We conclude that inhibition of FAS can be achieved without parallel stimulation of fatty acid oxidation and that inhibition of tumor growth in vivo can be achieved without anorexia and weight loss. Thus, this therapeutic strategy holds promise for clinical treatment of cancers, including non-small cell lung cancer, the leading cause of cancer mortality in the United States and Europe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-07-1186 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!