Purpose: R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy.

Methods: Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype.

Results: In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds(+/-) background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds(+/-) background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals.

Conclusions: The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haploinsufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263142PMC
http://dx.doi.org/10.1167/iovs.07-0663DOI Listing

Publication Analysis

Top Keywords

r172w mutation
16
cone degeneration
12
mutation
8
gene supplementation
8
mouse model
8
human phenotype
8
rds genetic
8
background l-r172w
8
dominant cone
8
rds+/- background
8

Similar Publications

Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate dehydrogenase 2.

Sci Rep

November 2022

Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.

Mutations in isocitrate dehydrogenase (IDH) are frequently found in low-grade gliomas, secondary glioblastoma, chondrosarcoma, acute myeloid leukemias, and intrahepatic cholangiocarcinoma. However, the molecular mechanisms of how IDH2 mutations induce carcinogenesis remain unclear. Using overlapping PCR, transfection, immunoblotting, immunoprecipitation, measurements of enzyme activity, glucose, lactic acid, ATP, and reactive oxygen species (ROS), cell viability, protein degradation assays post-inhibition of the 26S proteasome (bortezomib) or HSP90 (17-AAG), and a homology model, we demonstrated that the properties of ten cancer-associated IDH2 variants (R140G/Q/W and R172S/K/M/W/G/C/P) arising from point mutations are closely related to their structure and stability.

View Article and Find Full Text PDF

We have previously published a study on the reliable detection of 2-hydroxyglutarate (2HG) in lower-grade gliomas by magnetic resonance spectroscopy (MRS). In this short article, we re-evaluated five glioma cases originally assessed as isocitrate dehydrogenase (IDH) wildtype, which showed a high accumulation of 2HG, and were thought to be false-positives. A new primer was used for the detection of mutation by Sanger sequencing.

View Article and Find Full Text PDF

IDH1/2 hotspot mutations occur in glioma, cholangiocarcinoma, chondrosarcoma, sinonasal carcinoma, and T-cell lymphoma and have diagnostic, prognostic, and/or therapeutic value. Availability of immunohistochemistry (IHC) protocols for specific IDH2 mutation detection is limited. A targeted exome sequencing assay MSK-IMPACT cohort comprising >38,000 cancer cases was explored for the presence of IDH1/2 mutations in solid malignancies and select T-cell lymphomas.

View Article and Find Full Text PDF

The molecular profile of cholangiocarcinoma (CC) remains elusive. The prognostic value of isocitrate dehydrogenase (IDH) mutations in CC is controversial, and there have been few relevant studies in Asian populations. In the present study, we investigated the frequency and prognostic significance of IDH mutations in Korean patients with CC.

View Article and Find Full Text PDF

Peripherin 2 (PRPH2) is a retina-specific tetraspanin protein essential for the formation of rod and cone photoreceptor outer segments (OS). Patients with mutations in PRPH2 exhibit severe retinal degeneration characterized by vast inter- and intra-familial phenotypic heterogeneity. To help understand contributors to this within-mutation disease variability, we asked whether the PRPH2 binding partner rod OS membrane protein 1 (ROM1) could serve as a phenotypic modifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!