Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and beta2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111110 | PMC |
http://dx.doi.org/10.2353/ajpath.2007.061206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!