The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517428 | PMC |
http://dx.doi.org/10.1124/pr.107.07108 | DOI Listing |
Semin Nucl Med
January 2025
Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria. Electronic address:
Gastrin-releasing peptide receptor (GRPR), overexpressed in various cancers, is a promising target for positron emission tomography (PET). This systematic review investigated the diagnostic value of GRPR-targeted PET imaging in oncology. A systematic search was conducted on major medical databases until May 23, 2024.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Clinical Laboratory Medicine, the First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
Objective: Urinary proteins are effective tumor biomarkers. Human epididymis protein 4 (HE4), progastrin-releasing peptide (ProGRP), carcinoembryonic antigen (CEA), cytokeratin-19 fragment 21-1(CYFRA 21-1), and neuron-specific enolase (NSE) in serum, were proposed as tumor biomarkers of lung cancer. Our aim was to identify the urine protein biomarkers that can distinguish patients with lung cancer from healthy individuals and/or patients with benign lung disease with a high level of sensitivity and specificity.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, PR China. Electronic address:
Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Medicinal Chemistry, Uppsala University, Uppsala, 751 23, Sweden.
Background: Gastrin releasing peptide receptor (GRPR)-directed radiopharmaceuticals for targeted radionuclide therapy may be a very promising addition in prostate and breast cancer patient management. Aiming to provide a GRPR-targeting theranostic pair, we have utilized the Tc-99m/Re-188 radiometal pair, in combination with two bombesin based antagonists, maSSS-PEG2-RM26 and maSES-PEG2-RM26. The two main aims of the current study were (i) to elucidate the influence of the radiometal-exchange on the biodistribution profile of the two peptides and (ii) to evaluate the feasibility of using the [Tc]Tc labeled counterparts for the dosimetry estimation for the [Re]Re-labeled conjugates.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of Emergency, Wuhan No.6 Hospital(Affiliated Hospital of Jianghan University), No.168, Xianggang Road, Jiangan District, Wuhan, Hubei 430015, China. Electronic address:
Background And Objective: Prostate cancer (PCa) is the second most commonly diagnosed cancer in males, the mechanism of PCa with bone metastasis remains unclear. In this study, we aimed to utilize a retrospective clinical study to evaluate the diagnostic value of bone metastases from PCa and provide reference values for future applications.
Methods: We retrospectively collected a total of 200 samples including 100 PCa patients with bone metastatic and 100 without from June 2019 to August 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!