Activating transcription factor (ATF) 5 is a transcription factor belonging to the ATF/cAMP-response element-binding protein gene family. We previously reported that ATF5 mRNA expression increased in response to amino acid limitation. The ATF5 gene allows transcription of mRNAs with at least two alternative 5'-untranslated regions (5'-UTRs), 5'-UTRalpha and 5'-UTRbeta, derived from exon1alpha and exon1beta. 5'-UTRalpha contains highly conserved sequences, in which the upstream open reading frames (uORFs) uORF1 and uORF2 are found in many species. This study was designed to investigate the potential role of 5'-UTRs in translational control. These 5'-UTRs differentially determined translation efficiency from mRNA. The presence of 5'-UTRalpha or 5'-UTRbeta represses translation from the downstream ATF5 ORF. Moreover, 5'-UTRalpha-regulated translational repression is released by amino acid limitation or NaAsO(2) exposure. This release was not seen for 5'-UTRbeta. Mutation of uAUG2 in the uORF2 of 5'-UTRalpha restored the basal expression and abolished the positive regulation by amino acid limitation or arsenite exposure. We demonstrated that phosphorylation of eukaryotic initiation factor 2alpha was required for amino acid limitation-induced translational regulation of ATF5. Furthermore, arsenite exposure activated the exogenously expressed heme-regulated inhibitor kinase and induced the phosphorylation of eukaryotic initiation factor 2alpha in nonerythroid cells. These results suggest that translation of ATF5 is regulated by the alternative 5'-UTR region of its mRNA, and ATF5 may play a role in protecting cells from amino acid limitation or arsenite-induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M707781200DOI Listing

Publication Analysis

Top Keywords

amino acid
20
acid limitation
16
translation atf5
8
atf5 mrna
8
transcription factor
8
5'-utralpha 5'-utrbeta
8
arsenite exposure
8
phosphorylation eukaryotic
8
eukaryotic initiation
8
initiation factor
8

Similar Publications

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

Selenopeptides can be ideal dietary selenium (Se) supplements for humans. Currently, rice is not used much as a source of selenopeptides. Here, we executed the selenopeptidomics analysis of selenium-enriched rice protein hydrolysates using the full MS-dd-MS2 acquisition method and identified selenopeptides, including L{Se-Met}AK and other selenopeptides.

View Article and Find Full Text PDF

Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Significance of birth in the maintenance of quiescent neural stem cells.

Sci Adv

January 2025

Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.

Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!