AI Article Synopsis

Article Abstract

A 47-year-old woman presented with severe hemolytic uremic syndrome (HUS) followed by heart failure. An echocardiogram showed an ejection fraction of 20%, and a cardiac catheterization followed by a myocardial histologic evaluation demonstrated dilated cardiomyopathy. Plasma exchange and hemodialysis were performed regularly. The later outcomes of renal function and cardiomyopathy were favorable. A review of the literature confirmed the rare and severe nature of cardiac lesions occurring in the course of HUS. This case indicates the importance of cardiac monitoring in HUS and the need for prolonged support.

Download full-text PDF

Source
http://dx.doi.org/10.1532/IJH97.E0713DOI Listing

Publication Analysis

Top Keywords

dilated cardiomyopathy
8
hemolytic uremic
8
uremic syndrome
8
cardiomyopathy course
4
course hemolytic
4
syndrome 47-year-old
4
47-year-old woman
4
woman presented
4
presented severe
4
severe hemolytic
4

Similar Publications

Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.

View Article and Find Full Text PDF

Recent development in CRISPR-Cas systems for cardiac disease.

Prog Mol Biol Transl Sci

January 2025

Department of Microbiology, Gargi College, University of Delhi, New Delhi, India. Electronic address:

The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

A 71-year-old woman with dilated cardiomyopathy underwent an echocardiogram showing new onset of multiple mobile left ventricular masses. She experienced a mild COVID-19 infection 1 month before. After a multimodality imaging evaluation, vitamin K antagonist treatment was started, with progressive reduction of the masses without clinical events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!