Objectives: Malignant phenotypic traits are caused by microenvironmental selection pressures during carcinogenesis. Hypoxia can drive a tumor toward a more aggressive malignant phenotype. The objective was to better understand the role of the hypoxia-regulated genes in cervical carcinogenesis.
Methods: We analyzed the expression of the hypoxia-regulated genes, including hypoxia-inducible factor-1alpha (HIF-1alpha), erythropoietin (Epo), vascular endothelial growth factor (VEGF), glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), and MET, in cervical cell lines and human tissue samples of cervical intraepithelial neoplasia (CIN I-III) and invasive squamous cell carcinoma (ISCC).
Results: CAIX and MET were expressed in cervical carcinoma cell lines, but not in normal or human papillomavirus-immortalized cervical cells. In clinical tissue samples, Epo, VEGF, GLUT1, and CAIX were not detected in normal squamous epithelia. GLUT1 was expressed in nearly all cases of CIN and ISCC, however, CAIX was expressed only in CIN III and ISCC. HIF-1alpha and MET expression was confined to the basal cells in normal squamous epithelia and was detected in the dysplastic cells of CIN and ISCC.
Conclusions: The role of HIF-1alpha and MET changes from response to proliferation to tumor progression during cervical carcinogenesis. GLUT1 expression, a glycolytic phenotype adaptive to glycolysis, occurs early during cervical carcinogenesis and is a specific marker for dysplasia or carcinoma. MET and CAIX may contribute tumor progression in later stage. CAIX expression, an acid-resistant phenotype, may be a powerful adaptive advantage during carcinogenesis. Successful adaptation to the hypoxia-glycolysis-acidosis sequence in a microenvironment is crucial during carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygyno.2007.10.034 | DOI Listing |
EMBO J
September 2024
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland.
Hypoxia-inducible factor 1-alpha (HIF1A) is a key transcription factor aiding tumor cells' adaptation to hypoxia, regulated by the prolyl hydroxylase family (EGLN1-3) by directing toward degradation pathways. DNA methylation potentially influences EGLN and HIF1A levels, impacting cellular responses to hypoxia. We examined 96 HNSCC patients and three cell lines, analyzing gene expression of , , , , and at the mRNA level and EGLN1 protein levels.
View Article and Find Full Text PDFGenes (Basel)
May 2024
Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile.
The increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as , are unknown.
View Article and Find Full Text PDFGenet Epidemiol
December 2024
Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, USA.
Somatic changes like copy number aberrations (CNAs) and epigenetic alterations like methylation have pivotal effects on disease outcomes and prognosis in cancer, by regulating gene expressions, that drive critical biological processes. To identify potential biomarkers and molecular targets and understand how they impact disease outcomes, it is important to identify key groups of CNAs, the associated methylation, and the gene expressions they impact, through a joint integrative analysis. Here, we propose a novel analysis pipeline, the joint sparse canonical correlation analysis (jsCCA), an extension of sCCA, to effectively identify an ensemble of CNAs, methylation sites and gene (expression) components in the context of disease endpoints, especially tumor characteristics.
View Article and Find Full Text PDFLife Sci
March 2024
The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:
Aims: The "Warburg effect" has been developed from the discovery that hypoxia-inducible factor 1α (HIF-1α) could promote the conversion of pyruvate to lactate. However, no studies have linked hypoxia and lactate metabolism to uterine corpus endometrial carcinoma (UCEC).
Main Methods: Sequencing and clinical data of patients with UCEC were extracted from The Cancer Genome Atlas (TCGA) database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!