The nonlinearity of the blood oxygenation level-dependent (BOLD) response to stimuli of different duration, particularly those of short duration, has been well studied by functional magnetic resonance imaging (fMRI). This nonlinearity is assumed to be due to neural adaptation and the nonlinearity of the response in the oxygen extraction fraction (OEF); the latter has not been examined quantitatively in humans. To evaluate how the OEF response contributes to the nonlinearity of the BOLD response to neural activity, we used simultaneous fMRI and near-infrared spectroscopy (NIRS). The responses to visual stimuli of four different durations were measured as changes in the BOLD signal and the NIRS-derived hemoglobin concentrations. The hemodynamic response nonlinearity was quantified using an impulse response function model with saturation nonlinearity scaling in the response amplitude, assuming that the unknown neural adaptation parameters varied within a physiologically feasible range. Independent of the degree of neural adaptation, the BOLD response consistently showed saturation nonlinearity similar to that of the OEF response estimated from the NIRS measures, the nonlinearity of which was greater than that of the response in the total hemoglobin concentration representing the cerebral blood volume (CBV). We also found that the contribution of the OEF response to the BOLD response was four to seven times greater than the contribution of the CBV response. Thus, we conclude that the nonlinearity of the BOLD response to neural activity originates mainly from that of the OEF response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2007.09.053 | DOI Listing |
Alcohol Clin Exp Res (Hoboken)
December 2024
Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
Background: Adolescent alcohol use is the norm, but only some develop a substance use disorder. The increased risk might reflect heightened mesocorticolimbic responses to reward-related cues but results published to date have been inconsistent.
Methods: Young social drinkers (age 18.
Personal Disord
December 2024
School of Psychology, University of Wollongong.
Individuals with borderline personality disorder (BPD) often hold pervasive and negative self-views and experience feelings of low connectedness toward others despite effective treatment. This study aimed to identify neural and affective mechanisms of identity disturbance in BPD that contribute to difficulties in relating to others. Participants diagnosed with BPD ( = 34) and nonclinical controls (NCC; = 35) completed a within-subject social feedback task inside a magnetic resonance imaging scanner.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Department of Neuroscience, High Resolution Brain Imaging Lab, Baylor College of Medicine, Houston, Texas, USA.
In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity.
View Article and Find Full Text PDFFront Neurosci
November 2024
Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States.
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC H3A2B4, Canada.
Objective: To examine the blood oxygen level-dependent (BOLD) responses in the default mode network (DMN) and subcortical regions in relation to epileptic events in scalp EEG and intracranial EEG (iEEG).
Methods: We retrospectively compared BOLD responses in the DMN and subcortical regions to interictal epileptiform discharge (IED) characteristics of the scalp and iEEG in consecutive patients with focal epilepsy. All voxels were used as the denominator to assess the positive and negative BOLD ratios in each region, and the percentage of voxels with significant activation or deactivation was assessed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!