Lizards occupy both scotopic (light-limited) and photopic (light-rich) environments, thereby making this clade ideal for analyses of eye morphology adaptations. This study examines how in lizards the morphology of the eye varies according to activity in these different light environments. Measurements were collected on corneal diameters and axial lengths of the eye for 239 specimens of 116 lizard species (including Sphenodon) that include both species with scotopic and photopic visual adaptations. I show that the light level available to a lizard for vision has a significant effect on eye shape and size. Scotopic lizards have eye shapes that are optimized for visual sensitivity, with larger corneal diameters relative to axial lengths. However, photopic lizards do not exhibit absolutely larger axial lengths than do scotopic lizards, and the groups have the same absolute axial lengths of the eye. Results also indicate that the light level the lizard functions under is a more significant influence on eye shape, as defined by the relationship between corneal diameter and axial length of the eye, than is phylogeny.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2007.04.003 | DOI Listing |
J Ophthalmol
January 2025
Pediatric Ophthalmology, Shanxi Aier Eye Hospital, Aier Eye Hospital Group, Changsha, China.
To investigate the correlation between corneal biomechanical characteristics and refractive status in adolescents aged 5-13 years. A cross-sectional study involved 339 children aged 5-13 with a spherical equivalent (SE) range from -6.00 to +2.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China.
Objective: This study aims to explore the differences in ocular parameters among adult myopic patients with different degrees of myopia and axial lengths, and to investigate the correlations between these ocular parameters.
Methods: This single-center observational study collected clinical data from myopic patients aged 18-45 years who visited the Eye Hospital of Nanjing Medical University between January and June 2023. The data included laterality, diopter of spherical power (DS), diopter of cylindrical power (DC), spherical equivalent (SE), axial length (AL), central corneal thickness (CCT), flat meridian keratometry (K1), steep meridian keratometry (K2), mean keratometry (Km), anterior chamber depth (ACD), corneal radius of curvature (CRC), and axial length/corneal radius of curvature ratio (AL/CRC).
Ophthalmol Ther
January 2025
Eye School of Chengdu, University of Traditional Medicine, Chengdu, 510100, Sichuan Province, China.
Introduction: This study aimed to compare changes in retinal oxygen saturation 1 month after femtosecond-assisted laser in situ keratomileusis (FS-LASIK) in Chinese adults with myopia using retinal oximetry.
Methods: In this prospective, observational, single-center cohort study, Chinese adults aged 18-45 years with myopia were categorized into four groups according to spherical equivalent (SE), with 66 eyes characterized as low myopia (LM -3.00D < SE ≤ -0.
Arthritis Rheumatol
January 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Objective: A pathogenetic role of CD8+ T lymphocytes in radiographic axial spondyloarthritis (r-axSpA) and other spondyloarthritis (SpA) is sustained by genome-wide association studies (GWAS) and by the expansion of public T cell clonotypes in the target tissues. This study investigates the migration of CD8+ T cells, along with their phenotype and functions in patients with r-axSpA and psoriatic arthritis (PsA).
Methods: Peripheral blood CD8+ and CD4+ T cells were isolated from r-axSpA (n= 128), PsA (n= 60) and rheumatoid arthritis (RA, n= 74) patients and healthy donors (HD, n= 79).
Front Artif Intell
January 2025
School of Medicine, Stanford University, Palo Alto, CA, United States.
Given close relationships between ocular structure and ophthalmic disease, ocular biometry measurements (including axial length, lens thickness, anterior chamber depth, and keratometry values) may be leveraged as features in the prediction of eye diseases. However, ocular biometry measurements are often stored as PDFs rather than as structured data in electronic health records. Thus, time-consuming and laborious manual data entry is required for using biometry data as a disease predictor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!