The aim of the present study was to design, implement and evaluate a software system for discriminating between metastatic and primary brain tumors (gliomas and meningiomas) on MRI, employing textural features from routinely taken T1 post-contrast images. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a non-linear least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 67 T1-weighted post-contrast MR images (21 metastases, 19 meningiomas and 27 gliomas). LSFT enhanced the performance of the PNN, achieving classification accuracies of 95.24% for discriminating between metastatic and primary tumors and 93.48% for distinguishing gliomas from meningiomas. To improve the generalization of the proposed classification system, the external cross-validation method was also used, resulting in 71.43% and 81.25% accuracies in distinguishing metastatic from primary tumors and gliomas from meningiomas, respectively. LSFT improved PNN performance, increased class separability and resulted in dimensionality reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2007.10.007DOI Listing

Publication Analysis

Top Keywords

textural features
12
metastatic primary
12
gliomas meningiomas
12
probabilistic neural
8
discriminating metastatic
8
tumors gliomas
8
post-contrast images
8
primary tumors
8
improving brain
4
brain tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!