Calcitonin gene-related peptide-like and neuron-specific enolase-like immunoreactivity (CGRP-IR and NSE-IR) were surveyed immunohistochemically in the fungi-form, foliate and circumvallate papillae in rats. A dense CGRP-IR network (subgemmal and extragemmal) in the taste papillae is linked to the presence of taste buds, even though CGRP-IR fibers are rarely present in the taste buds. Three typical fiber populations were detected with these two markers. (a) A population of coarse NSE-IR intragemmal fibers characterized by thick neural swellings, never expressing CGRP-immunoreactivity. (b) A population of thin varicose intragemmal NSE/CGRP-IR fibers. (c) A population of subgemmal and extragemmal NSE-/CGRP-IR fibers that partly penetrated the epithelium. The common distribution of CGRP-IR and NSE-IR fibers at the base of taste buds, their differential distribution and morphology within taste buds, added to their restricted nature (gustatory or somatosensory) suggest that a population of CGRP-IR fibers undergoes a target-induced inhibition of its CGRP phenotype while entering the taste buds. The combined use of NSE and CGRP allowed a better characterization of nerve fibers within and between all three types of taste papillae. NSE was also a very good marker for a subtype of taste bud cells in the foliate and in the circumvallate papillae, but no such cells could be observed in the fungiform papillae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-0115(91)90058-o | DOI Listing |
BMC Oral Health
January 2025
Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
Objective: With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection.
Methods: Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted.
Sci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFChem Senses
January 2025
Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO.
Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!