We investigate an important issue of a meta-algorithm for selecting variables in the framework of microarray data. This wrapper method starts from any classification algorithm and weights each variable (i.e. gene) relative to its efficiency for classification. An optimization procedure is then inferred which exhibits important genes for the studied biological process. Theory and application with the SVM classifier were presented in Gadat and Younes, 2007 and we extend this method with CART. The classification error rates are computed on three famous public databases (Leukemia, Colon and Prostate) and compared with those from other wrapper methods (RFE, lo norm SVM, Random Forests). This allows the assessment of the statistical relevance of the proposed algorithm. Furthermore, a biological interpretation with the Ingenuity Pathway Analysis software outputs clearly shows that the gene selections from the different wrapper methods raise very relevant biological information, compared to a classical filter gene selection with T-test.

Download full-text PDF

Source
http://dx.doi.org/10.2202/1544-6115.1312DOI Listing

Publication Analysis

Top Keywords

wrapper methods
8
selection biologically
4
biologically relevant
4
relevant genes
4
wrapper
4
genes wrapper
4
wrapper stochastic
4
stochastic algorithm
4
algorithm investigate
4
investigate issue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!