A simple and accurate experimental method is described for determining the effective cantilever spring constant and the detector sensitivity of atomic force microscopy cantilevers on which a colloidal particle is attached. By attaching large (approximately 85 microm diameter) latex particles at various positions along the V-shaped cantilevers, we demonstrate how the normal and lateral spring constants as well as the sensitivity vary with loading position. Comparison with an explicit point-load theoretical model has also been used to verify the accuracy of the method.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2805518DOI Listing

Publication Analysis

Top Keywords

atomic force
8
force microscopy
8
loading position
8
cantilever spring
8
spring constants
8
detector sensitivity
8
microscopy loading
4
position dependence
4
dependence cantilever
4
constants detector
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pK values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form.

View Article and Find Full Text PDF

Investigation of the Impact of Thionine Functionalization on Magnetoelastic Sensor Performance.

ACS Appl Bio Mater

January 2025

Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brasil.

This study investigates the functionalization of gold-coated magnetoelastic sensors with thionine molecules, focusing on resonance frequency shifts. The functionalization process was characterized by using Raman spectroscopy and analyzed via scanning electron microscopy and atomic force microscopy, revealing the progressive formation of molecular clusters over time. Our results demonstrate that longer functionalization time leads to saturation of surface coverage and cluster formation, impacting the sensor's resonance frequency shifts.

View Article and Find Full Text PDF

Accurate determination of dielectric properties and surface characteristics of two-dimensional (2D) perovskite nanosheets, produced by chemical exfoliation of layered perovskites, is often hindered by exfoliation agent residues such as tetrabutylammonium (TBA). This study investigates the effect of ultraviolet (UV) light exposure duration on the removal of TBA residues from 2D Ca2NaNb4O13- nanosheets deposited on silicon substrates via Langmuir-Blodgett method using atomic force microscopy (AFM). Nanoscale adhesion forces between silicon AFM tips and nanofilms exposed to UV light for 3, 12, 18, and 24 hours were measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!