A unique nanoelectronic platform, based on single-walled carbon nanotubes (SWNTs), has been fabricated for measuring electrical transport in single-molecule DNA. We have tested 80 base pairs of single- and double-stranded DNA (ssDNA and dsDNA, respectively) of complex base sequences. About a 25-40 pA current (at 1 V) was measured for the dsDNA molecule covalently attached to the SWNT electrode at its termini. In the absence of base pair stacking, a ssDNA carries a feeble current of approximately 1 pA or less. Gate-voltage-dependent I-V characteristics revealed that the bridging dsDNA molecule acts as a p-type channel between SWNT source and drain electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl0716451 | DOI Listing |
Nano Lett
January 2025
Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.
Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.
View Article and Find Full Text PDFbioRxiv
January 2025
Chemical and Biological Engineering - Iowa State University, 618 Bissell Rd, Ames, IA 50011.
Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
Carbon nanotubes (CNTs) have drawn great attention as promising candidates for realizing next-generation printed thermoelectrics (TEs). However, the dispersion instability and resulting poor printability of CNTs have been major issues for their practical processing and device applications. In this work, we investigated the TE characteristics of water-processable carboxymethyl cellulose (CMC) and single-walled CNT (SWCNT) composite.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Department of Electronic Engineering, University of KwaZulu-Natal, Durban, South Africa.
Background: Thin Film Transistors (TFTs) are increasingly prevalent electrical components in display products, ranging from smartphones to diagonal flat panel TVs. The limitations in existing TFT technologies, such as high-temperature processing, carrier mobility, lower ON/OFF ratio, device mobility, and thermal stability, result in the search for new semiconductor materials with superior properties.
Objective: The main objective of this present work is to fabrícate the efficient Single-Walled Carbon Nanotube Thin Film Transistor (TFT) for flat panel display.
Food Chem
January 2025
Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:
Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!