Effect of ionic liquid on the kinetics of peroxidase catalysis.

J Microbiol Biotechnol

Department of Chemical Engineering and Bioengineering, University of Ulsan, Ulsan 680-749, Korea.

Published: April 2007

The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide (H2O2) was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of [BMIM][BF4] increased for the oxidation of guaiacol by HRP, the K(m) value increased with a slight decrease in the k(cat) value: The K(m) value increased from 2.8 mM in 100% (v/v) water to 22.5 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ionic liquid
28
v/v ionic
12
25% v/v
8
guaiacol hrp
8
ionic
7
liquid
7
liquid kinetics
4
kinetics peroxidase
4
peroxidase catalysis
4
catalysis water-miscible
4

Similar Publications

Excited-State Proton Transfer Dynamics of Cyanonaphthol in Protic Ionic Liquids: Concerted Effects of Basicity of Anions and Alkyl Carbons in Cations.

J Phys Chem B

January 2025

Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoyo 610-0321, Japan.

Excited-state proton transfer (ESPT) reactions of 5-cyano-2-naphthol (5CN2) and 5,8-dicyano-2-naphthol (DCN2) were investigated in protic ionic liquids (PILs) composed of quaternary ammonium (NH) ( = 2, 4, or 8) and hexanoate (CHCOO) using time-resolved fluorescence spectroscopy. The effects of the number of alkyl carbons in the cation and the basicity of the anion on the reaction yield and dynamics were examined. In a series of [NH][CHCOO], fluorescence from the hydrogen-bonding complex (AHBX) of a proton-dissociated form (RO) with a solvent acid in the electronic excited state was observed between the fluorescence bands of an acidic form (ROH) and an anionic form (RO) as in the case of [NH][CFCOO] (Fujii et al.

View Article and Find Full Text PDF

Xylan thermoplastics with closed-loop recyclability.

Carbohydr Polym

March 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:

Xylan-derived packaging materials have gained considerable popularity owing to their renewability, non-toxicity, and biodegradability. However, thermoforming is challenging owing to its rigid structure and hydrogen-bonding network of the xylan molecular chain, which limits its large-scale production. Herein, a heat-processable xylan derivative, xylan cinnamate (XC), was synthesized via an esterification reaction in ionic liquids.

View Article and Find Full Text PDF

We investigate the effects of water-processable celluloses on the charge-transport properties in the conducting polymer composites and their solid-state organic electrochemical transistors (OECTs). Water-soluble methyl cellulose (MC) and water-dispersible cellulose nanofiber (CNF) are blended with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in solution and used as a conductive channel. Both cellulose-PEDOT:PSS composites show fibrillar structures in thin films with respective dimensions of cellulose.

View Article and Find Full Text PDF

The synthesis of triazoles plays an important role in drug discovery research. 1,2,4-triazoles are considered significant scaffolds among several bioactive heterocycles due to their extensive use in the pharmaceutical and agrochemical sectors. Consequently, the importance of the synthesis of 1,2,4-triazoles a sustainable method has increased.

View Article and Find Full Text PDF

Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!