Mechanism and regulation of translation in C. elegans.

WormBook

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.

Published: January 2006

C. elegans represents a favorable system to study the extraordinarily complicated process of eukaryotic protein synthesis, which involves over 100 RNAs and over 200 polypeptides just for the core machinery. Initial research in protein synthesis relied on fractionated mammalian and plant systems, but in the mid-1970s, the powerful genetics of Saccharomyces cerevisiae began to yield new insights for translation in all eukaryotes. C. elegans has many features of higher eukaryotes that are not shared by yeast. This allows protein synthesis researchers to combine biochemistry, cell biology, developmental biology, genetics, and genomics to study regulation of gene expression at the translational level. Most components of the core translational machinery have been identified in C. elegans, including rRNAs, 5S RNA, tRNAs, ribosomal proteins, and aminoacyl tRNA synthetases. C. elegans has amino acid sequence homologs for 56 of the known initiation, elongation, and release factor polypeptides, but few of these have been isolated, functionally identified, or studied at the biochemical level. Similarly, C. elegans has homologs for 22 components of the major signal transduction pathways implicated in control of protein synthesis. The translational efficiency of individual mRNAs relies on cis-regulatory elements that include either a 7-methylguanosine- or 2,2,7-trimethylguanosine-containing cap, the 5'-terminal spliced leader, sequence elements in the 3'-untranslated regions, and the 3'-terminal poly(A) tract. Several key developmental pathways in C. elegans are predominantly governed by translational mechanisms. Some evidence has been presented that well described regulatory mechanisms in other organisms, including covalent modification of translation factors, sequestration of translation factors, and mRNA-specific changes in poly(A) length, also occur in C. elegans. The most interesting unexplored questions may involve changes in the translation of individual mRNAs during development, in response to physiological changes, or after genetic manipulations. Given the highly developed state of C. elegans genomics, it can be expected that future application of computational tools, including data visualization, will help detect new instances of translational control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781424PMC
http://dx.doi.org/10.1895/wormbook.1.63.1DOI Listing

Publication Analysis

Top Keywords

protein synthesis
16
elegans
9
individual mrnas
8
translation factors
8
translation
5
translational
5
mechanism regulation
4
regulation translation
4
translation elegans
4
elegans elegans
4

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!