The hypothesis tested in this study was that perioperative administration of the bisphosphonate zoledronate will reduce strain protection-related calcar osteopenia and maintain functional integration of the femoral component in an ovine hemiarthroplasty model. Twelve sheep received a unilateral cemented hemiarthroplasty where six animals were given nine intravenous infusions of zoledronate (10 microg/kg) pre-, peri-, and postsurgery over 8 months. Control animals received physiological saline only. Implants remained in vivo for 9 months. Ground reaction force (GRF) was used to assess functional loading of the implanted limb, bone mineral density (BMD) was quantified using dual energy X-ray absorptiometry (DEXA). Cortical bone area, thickness, and viable osteocytes were assessed histologically. No significant differences in GRF data between groups was identified. Results demonstrated a significant drop in BMD values in the control group (9.7%) when compared with the bisphosphonate-treated group (3.2%) (p = 0.0159). Histological results showed that cortical area, thickness, and the percentage of lacunae with viable osteocytes was significantly greater in the bisphosphonate-treated group when compared with control (p = 0.002, p = 0.001, p = 0.003, respectively). The administration of zoledronate reduced cortical osteopenia in the calcar region of the proximal femur and this therapy could be used as a preventive measure to combat strain protection osteopenia and its contribution to associated aseptic loosening in total hip replacement surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.20533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!