A photocatalytic water splitting device for separate hydrogen and oxygen evolution.

Chem Commun (Camb)

Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, Via Golgi 19, I-20133 Milano, Italy.

Published: December 2007

A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b711747gDOI Listing

Publication Analysis

Top Keywords

photocatalytic water
8
water splitting
8
separate hydrogen
8
hydrogen oxygen
8
splitting device
4
device separate
4
oxygen evolution
4
evolution two-compartment
4
two-compartment plexiglas
4
plexiglas cell
4

Similar Publications

Ag@g-CN/MoS heterostructure for efficient photocatalytic oxygen evolution under visible light irradiation.

Chem Commun (Camb)

January 2025

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Herein, an Ag@g-CN/MoS heterostructure is successfully synthesized for efficient solar-to-water oxidation. UV-vis DRS and steady-state PL analyses reveal the narrow band gap (2.10 eV) and efficient charge separation properties of the Ag nanoparticles and MoS, respectively.

View Article and Find Full Text PDF

Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.

View Article and Find Full Text PDF

Hydrogen evolution from water, catalyzed by solar energy, is a promising yet challenging endeavor. Small-sized catalysts usually exhibit high utilization and high performance in the hydrogen evolution field. However, the high surface energy tends to make them aggregate.

View Article and Find Full Text PDF

The use of eggshells as a primary source for developing value-added materials has garnered significant attention in recent years due to their effectiveness as an excellent adsorbent and support. In this study, the Solid-State Dispersion (SSD) method was utilized to prepare composite photocatalysts of eggshells (ES)/TiO₂ in various ratios. TiO₂ and eggshell photocatalysts were also employed as control samples.

View Article and Find Full Text PDF

Enhanced photocatalytic degradation of Rhodamine B using polyaniline-coated XTiO(X = Co, Ni) nanocomposites.

Sci Rep

January 2025

Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.

In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!