A novel method of detecting the spectral width and wavelength of extreme ultraviolet (XUV) pulses with a minimum number of experimental tools is demonstrated. The method relies on the photoionization probability of an atom as a function of the electric field. A tunable laser source in the XUV is used that is based on higher-harmonic generation of the frequency-doubled output of a 50-fs Ti:sapphire laser. The bandwidth and the wavelength of the seventh harmonic (~57nm) are detected with Ne, and the resolving power is lambda/Dlambda=10(5).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.26.001463 | DOI Listing |
Rep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFHeliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica Taipei 106 Taiwan
Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.
View Article and Find Full Text PDFRep Prog Phys
January 2025
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, Midtjylland, 8000, DENMARK.
Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.
Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!