We introduce a novel two-dimensional (2D) homodyne and heterodyne technique for imaging objects through or embedded in a scattering medium. Our imaging approach is based on heterodyning of light with different Doppler broadenings that is scattered from objects of two different textures or from an opaque object and a textured scattering medium. We report on the initial demonstration of pulling signals out of noise for an object hidden behind a scattering medium. Enhancements of signal-to-noise ratio of the order of 50 have been achieved by use of a 2D holographic phase-sensitive detector. We also discuss the experimental feasibility of this approach for objects embedded in a scattering medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.26.001433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!