Peripheral arterial disease (PAD) is a major health problem, especially when associated with severe hypertension. Administration of autologous bone marrow cells (BMCs) is emerging as a novel intervention to induce neoangiogenesis in ischemic limb models and in patients with PAD. This study evaluates the neovascularization capacity of BMCs alone or in combination with metabolic cotreatment (0.8% vitamin E, 0.05% vitamin C, and 5% of L-arginine) in a rat model of ischemic hindlimbs of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Molecular mechanisms were investigated in bone marrow-derived endothelial progenitor cells (BM-EPC) derived from rats. BMC therapy increased blood flow and capillary densities and Ki67 proliferative marker, and it decreased interstitial fibrosis. These effects were amplified by metabolic cotreatment, an intervention that induces vascular protection at least partly through the nitric oxide (NO)/endothelial nitric oxide synthase (eNOS) pathway, reduction of systemic oxidative stress, and macrophage activation. In addition, BMC therapy alone and, more consistently, in combination with metabolic treatment, ameliorated BM-EPC functional activity via decreased cellular senescence and improved homing capacity by increasing CXCR4-expression levels. These data suggest potential therapeutic effects of autologous BMCs and metabolic treatment in hypertensive PAD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0b013e31812564e4 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu, 50411, Estonia.
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs.
View Article and Find Full Text PDFSmall
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, P. R. China.
Black phosphorus (BP) has demonstrated potential as a drug carrier and photothermal agent in cancer therapy; however, its intrinsic functions in cancer treatment remain underexplored. This study investigates the immunomodulatory effects of polyethylene glycol-functionalized BP (BP-PEG) nanosheets in breast cancer models. Using immunocompetent mouse models-including 4T1 orthotopic BALB/c mice and MMTV-PyMT transgenic mice, it is found that BP-PEG significantly inhibits tumor growth and metastasis without directly inducing cytotoxicity in tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!