A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiwavelength pulse oximetry: theory for the future. | LitMetric

Multiwavelength pulse oximetry: theory for the future.

Anesth Analg

From the *Ogino Memorial Research Laboratory, Nihon Kohden Corporation; †Department of Respirology, National Tokyo Hospital, Tokyo; and ‡Nagano Children's Hospital, Nagano, Japan.

Published: December 2007

Background: As the use of pulse oximeters increases, the needs for higher performance and wider applicability of pulse oximetry have increased. To realize the full potential of pulse oximetry, it is indispensable to increase the number of optical wavelengths. To develop a multiwavelength oximetry system, a physical theory of pulse oximetry must be constructed. In addition, a theory for quantitative measurement of optical absorption in an optical scatterer, such as in living tissue, remains a difficult theoretical and practical aspect of this problem.

Methods: We adopted Schuster's theory of radiation through a foggy atmosphere for a basis of theory of pulse oximetry. We considered three factors affecting pulse oximetry: the optics, the tissue, and the venous blood.

Results: We derived a physical theoretical formula of pulse oximetry. The theory was confirmed with a full SO2 range experiment. Based on the theory, the three-wavelength method eliminated the effect of tissue and improved the accuracy of Spo2. The five-wavelength method eliminated the effect of venous blood and improved motion artifact elimination.

Conclusions: Our theory of multiwavelength pulse oximetry can be expected to be useful for solving almost all problems in pulse oximetry such as accuracy, motion artifact, low-pulse amplitude, response delay, and errors using reflection oximetry which will expand the application of pulse oximetry. Our theory is probably a rare case of success in solving the difficult problem of quantifying optical density of a substance embedded in an optically scattering medium.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ane.0000268716.07255.2bDOI Listing

Publication Analysis

Top Keywords

pulse oximetry
40
oximetry
12
oximetry theory
12
pulse
10
theory
9
multiwavelength pulse
8
theory pulse
8
method eliminated
8
motion artifact
8
theory future
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!