Motivation: Pre-selection of informative features for supervised classification is a crucial, albeit delicate, task. It is desirable that feature selection provides the features that contribute most to the classification task per se and which should therefore be used by any classifier later used to produce classification rules. In this article, a conceptually simple but computer-intensive approach to this task is proposed. The reliability of the approach rests on multiple construction of a tree classifier for many training sets randomly chosen from the original sample set, where samples in each training set consist of only a fraction of all of the observed features.

Results: The resulting ranking of features may then be used to advantage for classification via a classifier of any type. The approach was validated using Golub et al. leukemia data and the Alizadeh et al. lymphoma data. Not surprisingly, we obtained a significantly different list of genes. Biological interpretation of the genes selected by our method showed that several of them are involved in precursors to different types of leukemia and lymphoma rather than being genes that are common to several forms of cancers, which is the case for the other methods.

Availability: Prototype available upon request.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btm486DOI Listing

Publication Analysis

Top Keywords

feature selection
8
supervised classification
8
classification
5
monte carlo
4
carlo feature
4
selection supervised
4
classification motivation
4
motivation pre-selection
4
pre-selection informative
4
informative features
4

Similar Publications

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Soft tissue specifications and facial values ​​vary depending on the underlying skeletal structures. To achieve the ideal treatment result and patient satisfaction, one must know the attractive soft tissue specifications compatible with each type of malocclusion. This study aims to analyze the facial measurements that contribute to perceived facial attractiveness in patients with vertical growth patterns and skeletal class I malocclusion, focusing on gender-specific differences.

View Article and Find Full Text PDF

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.

View Article and Find Full Text PDF

Existing image fusion methods primarily focus on complex network structure designs while neglecting the limitations of simple fusion strategies in complex scenarios. To address this issue, this study proposes a new method for infrared and visible image fusion based on a multimodal large language model. The method proposed in this paper fully considers the high demand for semantic information in enhancing image quality as well as the fusion strategies in complex scenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!