A limited number of glycoproteins including luteinizing hormone and carbonic anhydrase-VI (CA6) bear N-linked oligosaccharides that are modified with beta1,4-linked N-acetylgalactosamine (GalNAc). The selective addition of GalNAc to these glycoproteins requires that the beta1,4-N-acetylgalactosaminyltransferase (betaGT) recognize both the oligosaccharide acceptor and a peptide recognition determinant on the substrate glycoprotein. We report here that two recently cloned betaGTs, betaGT3 and betaGT4, that are able to transfer GalNAc to GlcNAc in beta1,4-linkage display the necessary glycoprotein specificity in vivo. Both betaGTs transfer GalNAc to N-linked oligosaccharides on the luteinizing hormone alpha subunit and CA6 but not to those on transferrin (Trf). A single peptide recognition determinant encoded in the carboxyl-terminal 19-amino acid sequence of bovine CA6 mediates transfer of GalNAc to each of its two N-linked oligosaccharides. The addition of this 19-amino acid sequence to the carboxyl terminus of Trf confers full acceptor activity onto Trf for both betaGT3 and betaGT4 in vivo. The complete 19-amino acid sequence is required for optimal GalNAc addition in vivo, indicating that the peptide sequence is both necessary and sufficient for recognition by betaGT3 and betaGT4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M708160200 | DOI Listing |
BBA Adv
December 2024
Genos Glycoscience Research Laboratory, Zagreb, Croatia.
Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA.
Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic. Electronic address:
In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.
View Article and Find Full Text PDFTalanta
December 2024
Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic. Electronic address:
This work focuses on profiling N-linked glycans by capillary electrophoresis coupled to mass spectrometry using a novel fluorescent and mass spectrometry (MS) active derivatization tag. The label is based on 2-phenylpyridine bearing tertiary amine and hydrazide functionalities. It provides efficient labeling via hydrazone formation chemistry, promising fluorescence properties, and ionization efficiency in the positive ion MS mode.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan. Electronic address:
Free N-glycans (FNGs) are oligosaccharides that are structurally related to N-linked glycans, and are widely found in nature. The mechanisms responsible for the formation and degradation of intracellular FNGs are well characterized in mammalian cells. More recent analysis in mammalian sera shows that there are various types of extracellular free glycans, including FNGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!