On the origin of synonymous codon usage divergence between thermophilic and mesophilic prokaryotes.

FEBS Lett

Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India.

Published: December 2007

Synonymous codon usage analysis between thermophilic and mesophilic prokaryotes has gained wide attention in recent years. Although it is known that thermophilic and mesophilic prokaryotes use different subset of synonymous codons, no reason for this difference is known so far. In the present communication, by analyzing a large number of thermophilic and mesophilic prokaryotes, we provide evidence that bias in the selection of synonymous codons between thermophilic and mesophilic prokaryotes is related to differential folding pattern of mRNA secondary structures. Moreover, we observe that error-minimizing property has significant influence in differentiating the synonymous codon usage between thermophilic and mesophilic prokaryotes. Biological implications of these results are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2007.11.054DOI Listing

Publication Analysis

Top Keywords

thermophilic mesophilic
24
mesophilic prokaryotes
24
synonymous codon
12
codon usage
12
synonymous codons
8
thermophilic
6
mesophilic
6
prokaryotes
6
origin synonymous
4
usage divergence
4

Similar Publications

Source segregation and treatment of urine and faeces from dairy cattle reduces GHG and NH emissions in covered storage.

J Environ Manage

January 2025

Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands.

Managing dairy excreta as slurry can result in significant emissions of ammonia (NH) and greenhouse gases (GHGs) during storage and thereafter. Additionally, slurry often has an imbalanced nitrogen (N) to phosphorus (P) ratio for crop fertilization. While various treatments exist to address emissions and nutrient imbalances, each has trade-offs that can result in pollution swapping.

View Article and Find Full Text PDF

Investigating the effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula.

Chemosphere

January 2025

BioEngine Research team on green process engineering and biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec (Québec), Canada; CentrEau, Centre de recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions.

View Article and Find Full Text PDF

Protein stabilization in spray drying and solid-state storage by using a 'molecular lock' - exploiting bacterial adaptations for industrial applications.

RSC Chem Biol

December 2024

SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick Ireland

Small, stable biomedicines, like peptides and hormones, are already available on the market as spray dried formulations, however large biomolecules like antibodies and therapeutic enzymes continue to pose stability issues during the process. Stresses during solid-state formation are a barrier to formulation of large biotherapeutics as dry powders. Here, we explore an alternative avenue to protein stabilisation during the spray drying process, moving away from the use of excipients.

View Article and Find Full Text PDF

Antibiotic resistance reduction mechanisms during thermophilic anaerobic digestion of microalgae-bacteria aggregates.

Bioresour Technol

January 2025

Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, México. Electronic address:

Microalgae-bacteria-based systems are an emerging and promising approach for wastewater treatment plants (WWTP), having nutrient and antibiotic resistance removal comparable to conventional technologies. Still, antibiotic-resistance genes and bacteria (ARG and ARB) can proliferate in microalga-bacteria aggregates (MABA), a concern to control. Different temperature regimes of MABA continuous anaerobic digestion (AD), thermophilic (55 °C), and mesophilic (35 °C) were evaluated in this study as a strategy to eliminate ARB and ARGs.

View Article and Find Full Text PDF

Microbial transitions and degradation pathways driven by butyrate concentration in mesophilic and thermophilic anaerobic digestion under low hydrogen partial pressure.

Bioresour Technol

December 2024

Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland. Electronic address:

Butyrate accumulation significantly affects the efficiency and stability of anaerobic digestion, while its specific impact on methane yield and butyrate degradation remains unclear. This study investigated how butyrate concentrations (2.0, 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!