The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC1.1.1.34) catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway. Here we report for the first time the cloning and characterization of a full-length cDNA encoding HMGR (designated as CgHMGR, GenBank accession number EF206343) from hazel (Corylus avellana L. Gasaway), a taxol-producing plant species. The full-length cDNA of CgHMGR was 2064 bp containing a 1704-bp ORF encoding 567 amino acids. Bioinformatic analyses revealed that the deduced CgHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of CgHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that CgHMGR belonged to a small gene family. Expression analysis revealed that CgHMGR expressed high in roots, and low in leaves and stems, and the expression of CgHMGR could be up-regulated by methyl jasmonate (MeJA). The functional color assay in Escherichia coli showed that CgHMGR could accelerate the biosynthesis of beta-carotene, indicating that CgHMGR encoded a functional protein. The cloning, characterization and functional analysis of CgHMGR gene will enable us to further understand the role of CgHMGR involved in taxol biosynthetic pathway in C. avellana at molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5483/bmbrep.2007.40.6.861 | DOI Listing |
Int J Mol Sci
November 2023
Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México 11340, Mexico.
and , the most frequently isolated candidiasis species in the world, have developed mechanisms of resistance to treatment with azoles. Among the clinically used antifungal drugs are statins and other compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), resulting in decreased growth and ergosterol levels in yeasts. Ergosterol is a key element for the formation of the yeast cell membrane.
View Article and Find Full Text PDFMicrobiol Spectr
September 2023
Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México , Ciudad de México, México.
There is an urgent need to develop new antifungals due to the increasing prevalence of multidrug-resistant fungal infections and the recent emergence of COVID-19-associated candidiasis. A good study model for evaluating new antifungal compounds is , an opportunistic fungal pathogen with intrinsic resistance to azoles (the most common clinical drugs for treating fungal infections). The aim of the current contribution was to conduct tests of antifungal metabolites produced by the bacteria Q, identify their molecular structures, and utilize several techniques to provide evidence of their therapeutic target.
View Article and Find Full Text PDFMicrobiol Spectr
April 2022
Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
Due to the emergence of multidrug-resistant strains of yeasts belonging to the Candida genus, there is an urgent need to discover antifungal agents directed at alternative molecular targets. The aim of the current study was to evaluate the capacity of three different series of synthetic compounds to inhibit the Candida glabrata enzyme denominated 3-hydroxy-methyl-glutaryl-CoA reductase and thus affect ergosterol synthesis and yeast viability. Compounds 1c (α-asarone-related) and 5b (with a pyrrolic core) were selected as the best antifungal candidates among over 20 synthetic compounds studied.
View Article and Find Full Text PDFSci Rep
October 2021
Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CDMX, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, CP 11340, Mexico City, Mexico.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is a crucial enzyme in the ergosterol biosynthesis pathway. The aim of this study was to obtain, purify, characterize, and overexpress five point mutations in highly conserved regions of the catalytic domain of Candida glabrata HMGR (CgHMGR) to explore the function of key amino acid residues in enzymatic activity. Glutamic acid (Glu) was substituted by glutamine in the E680Q mutant (at the dimerization site), Glu by glutamine in E711Q (at the substrate binding site), aspartic acid by alanine in D805A, and methionine by arginine in M807R (the latter two at the cofactor binding site).
View Article and Find Full Text PDFJ Biotechnol
February 2019
Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, 11340 Mexico City, Mexico. Electronic address:
Due to increasing resistance of Candida species to antifungal drugs, especially azoles, new drugs are needed. The proposed compounds 3 and 4 are analogous to α-asarone (2), a naturally occurring potent inhibitor of HMGR with hypolipidemic and antifungal activity. We used the recombinant enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase of Candida glabrata (CgHMGR) as a model to test the effectiveness of the test compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!