AI Article Synopsis

  • This study discusses the dry sol-gel polycondensation process of p-X-C6H4SiH3 (where X represents various substituents) into silica using colloidal nickel nanoparticles as a catalyst.
  • The process achieves high yields and results in co-silicas when different ratios of compounds are mixed, with p-Cl-C6H4SiH3 producing the best overall yield and molecular weight.
  • The final products are amorphous gels with smooth surfaces, although some unreacted Si-H bonds remain due to steric hindrance, and a mechanism for the reaction is proposed.

Article Abstract

The dry sol-gel polycondensation at toluene in ambient air atmosphere of p-X-C6H4SiH3 (X = H, CH3, CH3O, F, Cl) to silica p-X-C6H4SiO15 in high yield, catalyzed by colloidal nickel nanoparticles in-situ generated from nickelocene(II), nickel(II) acetate, and bis(1,5-cyclooctadiene)nickel(0), is described. Similar catalytic activities were observed for the catalysts. Similarly, the dry sol-gel polyco-condensation p-X-C6H4SiH3 (X = CH3, CH3O, F, Cl):C6H4SiH3 (9:1 mole ratio) at toluene in ambient air atmosphere of was performed to yield co-silicas (p-X-C6H4SiO1.5)9(p-X-C6H4SiO1.5)1 in high yield using nickelocene. The co-gels with higher molecular weights and TGA residue yield were obtained when compared to the homogels. The highest yield, molecular weight, polydispersity index, and TGA residue yield were obtained for p-Cl-C6H4SiH3. Some degree of unreacted Si-H bonds still remained in the gel matrix because of steric bulkiness. All the insoluble gels adopt an amorphous structure with a smooth surface. A plausible mechanism for the dry sol-gel reaction was suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2007.084DOI Listing

Publication Analysis

Top Keywords

dry sol-gel
16
sol-gel polycondensation
8
catalyzed colloidal
8
colloidal nickel
8
nickel nanoparticles
8
toluene ambient
8
ambient air
8
air atmosphere
8
p-x-c6h4sih3 ch3
8
ch3 ch3o
8

Similar Publications

The leading cause of composite restoration failure is recurrent marginal decay. The margin between the composite and tooth is initially sealed by a low-viscosity adhesive, but chemical, physical, and mechanical stresses work synergistically and simultaneously to degrade the adhesive, destroying the interfacial seal and providing an ideal environment for bacteria to proliferate. Our group has been developing self-strengthening adhesives with improved chemical and mechanical characteristics.

View Article and Find Full Text PDF

A large amount of marble powder is abundantly available as a byproduct and waste in the marble industry, and its reinforcement has been attempted in several applications through surface modification. This article examines the use of MP in the production of rubber, paper, foam stabilizers, asphalt, paint, textiles, and adhesives. This article aims to provide a foundation for the surface modification of MP to enhance its properties and broaden its range of applications.

View Article and Find Full Text PDF

The shear flow and solid-liquid transition of mixed milk protein dispersions with varying concentrations of casein micelles (CMs) and serum proteins (SPs) are integral to key dairy processing operations, including microfiltration, ultrafiltration, diafiltration, and concentration-evaporation. However, the rheological behavior of these dispersions has not been sufficiently studied. In the present work, dispersions of CMs and SPs with total protein weight fractions () of 0.

View Article and Find Full Text PDF

Protein therapeutics, vaccines, and other commercial products are often sensitive to environmental factors, such as temperature and long-term storage. In many cases, long-term protein stability is achieved by refrigeration or freezing. One alternative is the encapsulation of the protein cargo within an inert silica matrix (ensilication) and storage or transport at room temperature as a dry powder.

View Article and Find Full Text PDF

The dynamic ethylene adsorption on carbon xerogels as a three-way game between porosity, surface chemistry and humidity.

J Colloid Interface Sci

January 2025

NanoTech - Nanomaterials and Sustainable Chemical Technologies, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, ES18071 Granada, Spain.

Novel carbon xerogels doped with heteroatoms (O, N, S) were prepared by sol-gel polymerization of resorcinol with heterocyclic aldehydes containing them. All doped materials presented higher O-contents than the reference material prepared with formaldehyde, and significant S- or N-loadings in the corresponding samples. Carbon xerogels were micro-mesoporous and N-doping favoured the formation of mesopores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!