Efficient access to a citizen's Integrated Electronic Health Record (I-EHR) is considered to be the cornerstone for the support of continuity of care, the reduction of avoidable mistakes, and the provision of tools and methods to support evidence-based medicine. For the past several years, a number of applications and services (including a lifelong I-EHR) have been installed, and enterprise and regional infrastructure has been developed, in HYGEIAnet, the Regional Health Information Network (RHIN) of the island of Crete, Greece. Through this paper, the technological effort toward the delivery of a lifelong I-EHR by means of World Wide Web Consortium (W3C) technologies, on top of a service-oriented architecture that reuses already existing middleware components is presented and critical issues are discussed. Certain design and development decisions are exposed and explained, laying this way the ground for coordinated, dynamic navigation to personalized healthcare delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1109/titb.2006.889711DOI Listing

Publication Analysis

Top Keywords

integrated electronic
8
electronic health
8
health record
8
lifelong i-ehr
8
delivering lifelong
4
lifelong integrated
4
record based
4
based service
4
service oriented
4
oriented architecture
4

Similar Publications

Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.

Methods:  The PubMed® and ClinicalTrials.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

Objective: The objectives of this study are to synthesize findings from recent research of retrieval-augmented generation (RAG) and large language models (LLMs) in biomedicine and provide clinical development guidelines to improve effectiveness.

Materials And Methods: We conducted a systematic literature review and a meta-analysis. The report was created in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 analysis.

View Article and Find Full Text PDF

Long-Time Coherent Integration (LTCI) utilizes digital integration to combine multiple coherent cycles, thereby improving the signal-to-noise ratio (SNR). Our previous work introduced single-bit LTCI, an approach optimized for FPGA implementation, but faced challenges of output saturation at high SNR levels and inherent limitations in SNR gain (SNRG), which are insufficient for certain applications. This paper presents a threshold tracking method that improves the performance of single-bit LTCI in high-SNR scenarios.

View Article and Find Full Text PDF

Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!