This work introduces an MR-compatible active breathing control device (MR-ABC) that can be applied to lung imaging. An MR-ABC consists of a pneumotachograph for respiratory monitoring and an airway-sealing unit. Using an MR-ABC, the subjects were forced to suspend breathing for short time intervals, which were used in turn for data acquisition. While the breathing flow was stopped, data acquisition was triggered by ECG to achieve simultaneous cardiac and respiratory synchronization and thus avoid artifacts from blood flow or heart movement. The flow stoppage allowed a prolonged acquisition window of up to 1.5 sec. To evaluate the potential of an MR-ABC for segmented k-space acquisition, diaphragm displacement was investigated in five volunteers and compared with images acquired using breath-holding, a respiratory belt, and free breathing. Respiratory movement was comparatively low using the breath-hold approach, a respiratory belt or an MR-ABC. During free-breathing diaphragm displacement was comparatively large. To demonstrate the potential of an MR-ABC, lung MRI was performed using whole-chest 3D gradient-echo imaging, multislice turbo spin-echo (TSE) imaging, and short tau inversion recovery TSE (STIR-TSE). Cardiorespiratory synchronization was used for each sequence. None of the volunteers reported any discomfort or inconvenience when using an MR-ABC. Flow stoppage of up to 2.5 sec per breathing cycle was well tolerated, therefore allowing for a reduction of the total imaging time as compared to usage of a respiratory belt or MR navigator.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.21424DOI Listing

Publication Analysis

Top Keywords

respiratory belt
12
lung mri
8
mr-compatible active
8
active breathing
8
breathing control
8
mr-abc
8
data acquisition
8
flow stoppage
8
potential mr-abc
8
diaphragm displacement
8

Similar Publications

The respiratory tract harbours microorganisms of the normal host microbiota which are also capable of causing invasive disease. Among these, Neisseria meningitidis a commensal bacterium of the oropharynx can cause meningitis, a disease with epidemic potential. The oral microbiome plays a crucial role in maintaining respiratory health.

View Article and Find Full Text PDF

Induction-based breathing sensors in automobiles enable unobtrusive respiratory rate monitoring as an indicator of a driver's alertness and health. This paper introduces a quantitative method based on signal quality to guide the integration of textile inductive electrodes in automotive applications. A case study with a simplified setup illustrated the ability of the method to successfully provide basic design rules about where and how to integrate the electrodes on seat belts and seat backs to gather good quality respiratory signals in an automobile.

View Article and Find Full Text PDF

MAPK pathways regulated apoptosis and pyroptosis in respiratory epithelial cells of a primitive vertebrate model during bacterial infection.

Int J Biol Macromol

December 2024

Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China. Electronic address:

Respiratory diseases caused by bacterial and viral infection have seriously affected human health. The invaginated lung structure in mammals caused difficulties in relevant research, here we evaluated the regulatory roles of MAPK pathways in apoptosis and pyroptosis during bacterial infection in an evaginated respiratory organ model for the first time. F.

View Article and Find Full Text PDF

Introduction: The blood culture positivity rate in the emergency department (ED) is <20%; however, the mortality associated with Community-acquired bacteraemia (CAB) is as high as 37.8%. For this reason, several models have been developed to predict blood culture positivity for the diagnosis of CAB.

View Article and Find Full Text PDF

Stereotactic ablative radiotherapy (SABR) has become a key technique in management of spine metastases. With improved control over treatment plan dosimetry, there is a greater need for accurate patient positioning to guarantee agreement between the treatment plan and delivered dose. With serious potential complications such as fracture and myelopathy, the margins of error in SABR of the spine are minimal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!