Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (-83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-007-9259-3DOI Listing

Publication Analysis

Top Keywords

giant cells
32
heat shock
16
hahsp177g4 promoter
12
cells
10
giant
10
small heat-shock
8
heat-shock proteins
8
feeding cells
8
nematodes induce
8
high metabolic
8

Similar Publications

African mole-rats (Bathyergidae, Rodentia) are subterranean rodents that live in extensive dark underground tunnel systems and rarely emerge aboveground. They can discriminate between light and dark but show no overt visually driven behaviours except for light-avoidance responses. Their eyes and central visual system are strongly reduced but not degenerated.

View Article and Find Full Text PDF

is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs.

View Article and Find Full Text PDF

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Cystic Basal Cell Carcinoma with a Giant Vulvar Cyst.

Acta Dermatovenerol Croat

November 2024

Takayuki Suyama, MD, PhD, Department of Dermatology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-koshigaya, Koshigaya, Saitama, 343-8555, Japan; ORCID ID: 0000-0002-6986-411X.

Cystic basal cell carcinoma (BCC) is a rare subtype of BCC (1). Histologically, it is usually characterized by multiple small cysts without a clinical cystic appearance (2). Herein, we report an unusual case of cystic BCC with a large vulvar cyst.

View Article and Find Full Text PDF

Introduction: Tumoral calcinosis is a rare hereditary condition characterized by the deposition of calcium phosphate and hydroxyapatite in periarticular soft tissues. First described by Giard and Duret in 1898 and later detailed by Inclan in 1943, this condition has often been confused with other forms of periarticular calcification. Tumoral calcinosis predominantly affects young males and is typically found around major joints, such as the shoulder, elbow, hip, ankle, and wrist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!