The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry.

Photochem Photobiol Sci

National Medical Laser Centre, Royal Free and University College Medical School, University College London, Charles Bell House, 67-73 Riding House Street, London, UKW1W 7EJ.

Published: December 2007

Understanding of the biology of photodynamic therapy (PDT) has expanded tremendously over the past few years. However, in the clinical situation, it is still a challenge to match the extent of PDT effects to the extent of the disease process being treated. PDT requires drug, light and oxygen, any of which can be the limiting factor in determining efficacy at each point in a target organ. This article reviews techniques available for monitoring tissue oxygenation during PDT. Point measurements can be made using oxygen electrodes or luminescence-based optodes for direct measurements of tissue pO2, or using optical spectroscopy for measuring the oxygen saturation of haemoglobin. Imaging is considerably more complex, but may become feasible with techniques like BOLD MRI. Pre-clinical studies have shown dramatic changes in oxygenation during PDT, which vary with the photosensitizer used and the light delivery regimen. Better oxygenation throughout treatment is achieved if the light fluence rate is kept low as this reduces the rate of oxygen consumption. The relationship between tissue oxygenation and PDT effect is complex and remarkably few studies have directly correlated oxygenation changes during PDT with the final biological effect, although those that have confirm the value of maintaining good oxygenation. Real time monitoring to ensure adequate oxygenation at strategic points in target tissues during PDT is likely to be important, particularly in the image guided treatment of tumours of solid organs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b709644eDOI Listing

Publication Analysis

Top Keywords

oxygenation pdt
12
photodynamic therapy
8
pdt
8
tissue oxygenation
8
oxygenation
7
role oxygen
4
oxygen monitoring
4
monitoring photodynamic
4
therapy potential
4
potential treatment
4

Similar Publications

Development of optical microneedle-lens array for photodynamic therapy.

Biomed Microdevices

January 2025

Institute of Industrial Science, The University of Tokyo, Meguro-Ku, 153-8505, Tokyo, Japan.

Recently, photodynamic therapy (PDT) which involves a photosensitizer (PS), a special drug activated by light, and light irradiation has been widely used in treating various skin diseases such as port-wine stain as well as cancers such as melanoma and non-melanoma skin cancers. PDT comprises two general steps: the introduction of PS into the body or a specific spot to be treated, and the irradiation process using a light source with a specific wavelength to excite the PS. Although PDT is gaining great attention owing to its potential as a targeted approach in the treatment of skin cancers, several limitations still exist for practical use.

View Article and Find Full Text PDF

Spontaneously Photocatalytic Nanoplatform for Sensitive Diagnosis and Penetrated Therapy of Cancer.

Anal Chem

January 2025

Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.

View Article and Find Full Text PDF

Decreasing the aggregation of photosensitizers to facilitate energy transfer for improved photodynamic therapy.

Nanoscale

January 2025

Institute of Hepatobiliary and Pancreatic Surgery, Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, P. R. China.

The mode of energy transfer between photosensitizers and oxygen determines the yield of singlet oxygen (O), crucial for photodynamic therapy (PDT). However, the aggregation of photosensitizers promotes electron transfer while inhibiting pure energy transfer, resulting in the generation of the hypotoxic superoxide anion (O) and consumption of substantial oxygen. Herein, we achieve the reduction of the aggregation of photosensitizers to inhibit electron transfer through classical chemical crosslinking, thereby boosting the production of O.

View Article and Find Full Text PDF

Hypericin photoactivation induces triple-negative breast cancer cells pyroptosis by targeting the ROS/CALR/Caspase-3/GSDME pathway.

J Adv Res

January 2025

Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:

Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.

Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!