Understanding the geochemical behaviour of the siderophile elements--those tending to form alloys with iron in natural environments--is important in the search for a deep-mantle chemical 'fingerprint' in upper mantle rocks, and also in the evaluation of models of large-scale differentiation of the Earth and terrestrial planets. These elements are highly concentrated in the core relative to the silicate mantle, but their concentrations in upper mantle rocks are higher than predicted by most core-formation models. It has been suggested that mixing of outer-core material back into the mantle following core formation may be responsible for the siderophile element ratios observed in upper mantle rocks. Such re-mixing has been attributed to an unspecified metal-silicate interaction in the reactive D'' layer just above the core-mantle boundary. The siderophile elements are excellent candidates as indicators of an outer-core contribution to the mantle, but the nature and existence of possible core-mantle interactions is controversial. In light of the recent findings that grain-boundary diffusion of oxygen through a dry intergranular medium may be effective over geologically significant length scales and that grain boundaries can be primary storage sites for incompatible lithophile elements, the question arises as to whether siderophile elements might exhibit similar (or greater) grain-boundary mobility. Here we report experimental results from a study of grain-boundary diffusion of siderophile elements through polycrystalline MgO that were obtained by quantifying the extent of alloy formation between initially pure metals separated by approximately 1 mm of polycrystalline MgO. Grain-boundary diffusion resulted in significant alloying of sink and source particles, enabling calculation of grain-boundary fluxes. Our computed diffusivities were high enough to allow transport of a number of siderophile elements over geologically significant length scales (tens of kilometres) over the age of the Earth. This finding establishes grain-boundary diffusion as a potential fast pathway for chemical communication between the core and mantle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06380 | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
The core-mantle differentiation process plays a pivotal role in redistributing material on a massive scale, shaping the long-term evolution of rocky planets. Understanding this process is crucial for gaining insights into the accretion and evolution of planets like Mars. However, the details of Mars's core-mantle differentiation remain poorly understood due to limited compositional data for its core and mantle.
View Article and Find Full Text PDFSci Adv
September 2024
Department of Geosciences, Princeton University, Princeton, NJ, USA.
Radiogenic heat production is fundamental to the energy budget of planets. Roughly half of the heat that Earth loses through its surface today comes from the three long-lived, heat-producing elements (potassium, thorium, and uranium). These three elements have long been believed to be highly lithophile and thus concentrate in the mantle of rocky planets.
View Article and Find Full Text PDFSci Adv
May 2024
Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, 75005 Paris, France.
Highly siderophile element abundances and Os isotopes of nakhlite and chassignite meteorites demonstrate that they represent a comagmatic suite from Mars. Nakhlites experienced variable assimilation of >2-billion-year-old altered high Re/Os basaltic crust. This basaltic crust is distinct from the ancient crust represented by meteorites Allan Hills 84001 or impact-contaminated Northwest Africa 7034/7533.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA 90095-1567.
Magmatic iron-meteorite parent bodies are the earliest planetesimals in the Solar System, and they preserve information about conditions and planet-forming processes in the solar nebula. In this study, we include comprehensive elemental compositions and fractional-crystallization modeling for iron meteorites from the cores of five differentiated asteroids from the inner Solar System. Together with previous results of metallic cores from the outer Solar System, we conclude that asteroidal cores from the outer Solar System have smaller sizes, elevated siderophile-element abundances, and simpler crystallization processes than those from the inner Solar System.
View Article and Find Full Text PDFSci Adv
December 2023
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China.
Moderately siderophile (e.g., Ni) and highly siderophile elements (HSEs) in the bulk silicate Earth (BSE) are believed to be partly or near-completely delivered by late accretion after the depletion caused by metallic core formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!