A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents. | LitMetric

Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents.

J Neurophysiol

Canadian Institutes of Health Research Group in Sensory-Motor Systems, Department of Physiology, Centre for Neuroscience Studies, Queen's University, Kingston, Canada.

Published: February 2008

The ability of inhibitory synaptic inputs to dampen the excitability of motoneurons is augmented when persistent inward currents (PICs) are activated. This amplification could be due to an increase in the driving potential of inhibitory synapses or the deactivation of the channels underlying PICs. Our goal was to determine which mechanism leads to the amplification of inhibitory inputs by PICs. To reach this goal, we measured inhibitory postsynaptic currents (IPSCs) in decerebrate cats during somatic voltage-clamp steps. These IPSCs were generated by tonic activation of Renshaw cells. The IPSCs exhibited a rapid rise and a slower decay to a plateau level. Activation of PICs always led to an increase in the peak of the IPSC, but the amount of decay after the peak of the IPSC was inversely related to the size of the IPSC. These results were replicated in simulations based on compartmental models of motoneurons incorporating distributions of Renshaw cell synapses based on anatomical observations, and L-type calcium channels distributed as 100-microm-long hot spots centered 100 to 400 microm away from the soma. For smaller IPSCs, amplification by PICs was due to an increase in the driving force of the inhibitory synaptic current. For larger IPSCs, amplification was caused by deactivation of the channels underlying PICs leading to a lesser decay of the IPSCs. As a result of this change in the time course of the IPSC, deactivation of the channels underlying PICs leads to a greater amplification of the total inhibitory synaptic current.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930909PMC
http://dx.doi.org/10.1152/jn.00717.2007DOI Listing

Publication Analysis

Top Keywords

inhibitory synaptic
12
deactivation channels
12
channels underlying
12
underlying pics
12
persistent currents
8
increase driving
8
peak ipsc
8
ipscs amplification
8
synaptic current
8
pics
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!