Viruslike particles which displayed a peculiar wheellike appearance that distinguished them from A-, B- or C-type particles had previously been described in the early mouse embryo. The maximum expression of these so-called epsilon particles was observed in two-cell-stage embryos, followed by their rapid decline at later stages of development and no particles detected at the zygote one-cell stage. Here, we show that these particles are in fact produced by a newly discovered murine endogenous retrovirus (ERV) belonging to the widespread family of mammalian ERV-L elements and named MuERV-L. Using antibodies that we raised against the Gag protein of these elements, Western blot analysis and in toto immunofluorescence studies of the embryos at various stages disclosed the same developmental expression profile as that observed for epsilon particles. Using expression vectors for cloned, full-length, entirely coding MuERV-L copies and cell transfection, direct identification of the epsilon particles was finally achieved by high-resolution electron microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224431 | PMC |
http://dx.doi.org/10.1128/JVI.02097-07 | DOI Listing |
J Phys Chem B
January 2025
Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.
In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.
View Article and Find Full Text PDFTher Deliv
December 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
Aim: Voriconazole (VRZ) is highly effective in treating invasive pulmonary aspergillosis (IPA), in addition to hepatotoxicity. Therefore, the current study focuses on the development and characterization of voriconazole-loaded microspheres (VRZ@PCL MSPs) to augment pulmonary localization and antifungal efficacy.
Methods: VRZ@PCL MSPs were fabricated by using the o/w emulsion method.
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada.
Gold nanoparticles (GNPs) encapsulated in amphiphilic block copolymers are a promising system for numerous biomedical applications, although critical information on the effects of various preparation variables on the structure and properties of this unique type of nanomaterial is currently missing from the literature. In this research, we synthesized GNPs functionalized with thiol-terminated polycaprolactone (PCL-GNPs) before encapsulating them into poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG) micellar nanoparticles via nanoprecipitation to yield GNP-loaded polymeric nanoparticles (GNP-PNPs). We explored the role of different manufacturing variables (water volume, PCL--PEG to PCL-GNP ratio, and PEG block length) on the sizes, morphologies, GNP occupancies, colloidal gold concentrations, and time stability of GNP-PNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!