The initial stage of foot-and-mouth disease virus (FMDV) infection is virus binding to cell surface integrins via the RGD motif in the GH loop of the VP1 capsid protein. As for all ligand/integrin interactions, the initial contact between FMDV and its integrin receptors is cation dependent and hence inhibited by EDTA. We have investigated this binding process with RGD-containing peptides derived from the VP1 capsid protein of FMDV and discovered that, upon binding, some of these peptides form highly stable, EDTA-resistant associations with integrin alphavbeta6. Peptides containing specific substitutions show that this stable binding is dependent on a helical structure immediately C terminal to the RGD and, specifically, two leucine residues at positions RGD +1 and RGD +4. These observations have a biological consequence, as we show further that stable, EDTA-resistant binding to alphavbeta6 is a property also exhibited by FMDV particles. Thus, the integrin-binding loop of FMDV appears to have evolved to form very stable complexes with the principal receptor of FMDV, integrin alphavbeta6. An ability to induce such stable complexes with its cellular receptor is likely to contribute significantly to the high infectiousness of FMDV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224447 | PMC |
http://dx.doi.org/10.1128/JVI.01480-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!