Thrombospondin-1 (TSP-1), which is synthesized by mesangial cells, is known for its anti-angiogenic activity and its ability to activate latent TGF-beta. TSP-1 is upregulated in renal diseases associated with tissue remodeling. Therefore, we hypothesized that the expression of TSP-1 might be modulated by changes in cell morphology involving proteins of the Rho family. Spreading of mesangial cells after detachment and reseeding was characterized by the formation of lamellipodia and focal adhesions, pointing toward a Rac-1-mediated rearrangement of actin structures. Clustering of focal adhesion proteins was also observed in a model system of nocodazole-induced disruption of microtubules. These morphological alterations were impeded by pharmacological inhibition of Src family kinases, of the small GTPase Rac-1, or by downregulation of Rac-1 by siRNA. Upon cell spreading, TSP-1 was upregulated in the absence and much more prominently in the presence of serum, but also after nocodazole treatment. TSP-1 upregulation was controlled by activation of Src family kinases, ERK 1/2 and Rac-1, whereas activation of RhoA-ROCK signaling was not linked to TSP-1 induction. We thus provide evidence that TSP-1 expression is induced by common signaling pathways, which are activated by morphological alterations of renal mesangial cells or by soluble factors as contained in serum, and these pathways include Src family kinases, ERK 1/2 and Rac-1. Our data suggest that tissue remodeling activates gene expression of pathophysiologically relevant proteins such as TSP-1.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00093.2007DOI Listing

Publication Analysis

Top Keywords

mesangial cells
12
src family
12
family kinases
12
small gtpase
8
gtpase rac-1
8
cell morphology
8
tsp-1
8
tsp-1 upregulated
8
tissue remodeling
8
morphological alterations
8

Similar Publications

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies and damage to multiple organs. Glomerulonephritis, a manifestation involving glomerular deposition of immune complexes and complement components, significantly contributes to disease morbidity. Although the endosomal single-stranded RNA sensor TLR7 is known to drive glomerulonephritis by promoting autoantibody production in B cells, the contribution of macrophage TLR7 responses to glomerulonephritis remains poorly understood.

View Article and Find Full Text PDF

(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.

View Article and Find Full Text PDF

Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.

View Article and Find Full Text PDF

Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.

Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!