Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages.

Environ Pollut

Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000, Brazil.

Published: July 2008

The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A45d, A90d and A180d) and three P feeding regimens (P200+0, P134+66 and P66+134) growing for 45 d in 0.2-strength Hoagland-Arnon solution containing 145 microg L(-1) As. While all plants received 200 microM P, P was added in two phases: during acclimation and after arsenic exposure. High initial P-supply (P200+0) favored frond biomass production and plant P uptake, while split-P application (P134+66 and P66+134) favored plant root production. Single P addition favored arsenic accumulation in the roots while split-P addition increased frond arsenic accumulation. Young ferns (A45d) in treatment P134+66 were the most efficient in arsenic removal, reducing arsenic concentration to below 10 microg L(-1) in 35 d. The results indicated that the use of young ferns, coupled with feeding of low initial P or split-P application, increased the efficiency of arsenic removal by P. vittata.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2007.10.012DOI Listing

Publication Analysis

Top Keywords

arsenic removal
12
arsenic
9
timing phosphate
8
phosphate application
8
pteris vittata
8
vittata ages
8
p134+66 p66+134
8
microg l-1
8
split-p application
8
arsenic accumulation
8

Similar Publications

Effective treatment of thioantimonates-bearing waters by nanocrystalline iowaite, an iron-based layered double hydroxide.

Environ Pollut

January 2025

State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China.

Elevated concentrations of antimony (Sb) in the environment originating from natural and anthropogenic sources are of global concern due to their high toxicity and mobility. Notably, the formation of thioantimony species (e.g.

View Article and Find Full Text PDF

Solar-based technologies for removing potentially toxic metals from water sources: a review.

Environ Sci Pollut Res Int

January 2025

Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil.

Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals.

View Article and Find Full Text PDF

This study addresses the pervasive issue of particulate matter (PM) emission in urban areas, proposing a better approach using scanning electron microscope (SEM) techniques to identify plant species effective in airborne PM removal. Conducted in Bilaspur city, the research strategically selected six plant species across four distinct sites and applied the SEM-Image J method for analysis, yielding significant insights, especially in the respirable PM range. Among the tested plant species, Senna Siamea and Dalbergia Sissoo emerged as consistent and standout performers, displaying the highest PM removal efficiency across all sites.

View Article and Find Full Text PDF

Synchronous Photocatalytic Redox Conversion of Chromium(VI) and Arsenic(III) by Bimetallic Fe/Ti Metal-Organic Frameworks.

Inorg Chem

January 2025

School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China.

In this work, bimetallic organic frameworks NH-MOFs(Fe, Ti) with different Fe/Ti molar ratios were prepared by a hydrothermal method for the synchronous redox transformation of Cr(VI) and As(III). These results showed that NH-MIL-125(Ti) was less effective in the photocatalytic removal of Cr(VI), whereas NH-MIL-88B(Fe) was less effective in the photocatalytic oxidative removal of As(III). Due to the introduction of Fe, the photocatalytic reduction removal of Cr(VI) (23.

View Article and Find Full Text PDF

Specific Enrichment of Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil.

Environ Sci Technol

January 2025

Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China.

Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of , a potential As hyperaccumulator. was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!