Some 1-[4-(9-benzyl-2-phenyl-9H-purin-6-ylamino)-phenyl]-3-phenyl-urea derivatives and some 1-[4-(9-benzyl-2-phenyl-9H-8-azapurin-6-ylamino)-phenyl]-3-phenyl-urea derivatives were synthesised and evaluated for their interaction with adenosine receptors. It was found that some of these compounds can act as positive enhancers of agonist and antagonist radioligands for the A(2A) adenosine receptors. This evidence was also strengthened by functional data. Other compounds can act as negative modulators. Furthermore these compounds show inhibitory properties for A(1) and A(3) adenosine receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2007.10.021DOI Listing

Publication Analysis

Top Keywords

adenosine receptors
16
a2a adenosine
8
n6-13-diphenylurea derivatives
4
derivatives 2-phenyl-9-benzyladenines
4
2-phenyl-9-benzyladenines 8-azaadenines
4
8-azaadenines synthesis
4
synthesis biological
4
biological evaluation
4
evaluation allosteric
4
allosteric modulators
4

Similar Publications

Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors.

Pharmacol Ther

January 2025

School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.

G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects.

View Article and Find Full Text PDF

Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.

View Article and Find Full Text PDF

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60.

View Article and Find Full Text PDF

Allostery.

Q Rev Biophys

January 2025

Department of Chemistry, University of Oslo, Oslo, Norway.

describes the ability of biological macromolecules to transmit signals spatially through the molecule from an site – a site that is distinct from binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!