The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2818.2007.01853.x | DOI Listing |
J Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China.
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).
View Article and Find Full Text PDFJ Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to -glucuronidase (Gus) converting 10--glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing.
View Article and Find Full Text PDFBiomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!