Myristoyl-based transport of peptides into living cells.

Biochemistry

Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.

Published: December 2007

Translocation of membrane-impermeant molecules to the interior of living cells is a necessity for many biochemical investigations. Myristoylation was studied as a means to introduce peptides into living cells. Uptake of a myristoylated, fluorescent peptide was efficient in the B lymphocyte cell line BA/F3. In contrast, this cell line was resistant to uptake of a cell-penetrating peptide derived from the TAT protein. In BA/F3 cells, membrane association was shown to be rapid, reaching a maximum within 30 min. Cellular uptake of the peptide lagged the membrane association but occurred within a similar time frame. Experiments performed at 37 versus 4 degrees C demonstrated profound temperature dependence in the cellular uptake of myristoylated cargo. Myristoylated peptides with either positive or negative charge were shown to load efficiently. In contrast to TAT-conjugated cargo, pyrenebutyrate did not enhance cellular uptake of the myristoylated peptide. The myristoylated peptide did not adversely affect cell viability at concentrations up to 100 muM. This assessment of myristoyl-based transport provides fundamental data needed in understanding the intracellular delivery of myristoylated peptide cargoes for cell-based biochemical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408932PMC
http://dx.doi.org/10.1021/bi701295kDOI Listing

Publication Analysis

Top Keywords

living cells
12
uptake myristoylated
12
cellular uptake
12
myristoylated peptide
12
myristoyl-based transport
8
peptides living
8
membrane association
8
myristoylated
6
peptide
6
uptake
5

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.

View Article and Find Full Text PDF

Cell-free systems: A synthetic biology tool for rapid prototyping in metabolic engineering.

Biotechnol Adv

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:

Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.

View Article and Find Full Text PDF

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Dynamic behavior of cell-cell adhesion factors in collective cell migration.

Cells Dev

January 2025

Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan. Electronic address:

Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!