Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry.

J Am Chem Soc

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: December 2007

Label-free imaging mass spectrometry is utilized the first time to study lipid-lipid interactions in a model membrane system. Ternary lipid mixtures of cholesterol (CH), sphingomyelin (SM), and phosphatidylcholine (PC) on supported Langmuir-Blodgett films are investigated as a mimic of the cellular membrane. The unique chemical specificity and imaging capability allow identification and localization of each lipid molecule in the membranes. The SM and PC in each ternary mixture vary in their acyl chain saturation with both, either, or neither one double bonded at the same position of their acyl chain. For the ternary mixtures with SM and PC both saturated or unsaturated, all the lipids are evenly distributed in the molecule-specific images. However, domain structures were observed for the two mixtures with either SM or PC unsaturated. In both films, the saturated lipid, whether it is SM or PC, colocalized with CH while the unsaturated lipid was excluded from the CH domains. These results strongly suggest that acyl chain saturation, rather than the specific interactions between SM and CH, is the dominating factor for SM colocalization with CH in the raft areas of the cellular membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483960PMC
http://dx.doi.org/10.1021/ja0741675DOI Listing

Publication Analysis

Top Keywords

acyl chain
12
imaging mass
8
mass spectrometry
8
chain saturation
8
sphingomyelin/phosphatidylcholine cholesterol
4
cholesterol interactions
4
interactions studied
4
studied imaging
4
spectrometry label-free
4
label-free imaging
4

Similar Publications

Skin Hydration by Natural Moisturizing Factors, a Story of H-Bond Networking.

J Phys Chem B

January 2025

INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.

Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).

View Article and Find Full Text PDF

Introduction: It is well acknowledged that lipids assume a critical role in oocyte maturation and early embryonic metabolism, this study aimed to evaluate the relationship between the lipid composition of plasma and follicular fluid (FF), and the consequences of embryonic development. This study compared the lipidomic profiles of paired plasma and FF samples obtained from sixty-five Chinese women who underwent assisted reproductive technology (ART) treatments.

Methods: Non-targeted lipidomics analysis.

View Article and Find Full Text PDF

The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.

View Article and Find Full Text PDF

Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach.

Biochim Biophys Acta Biomembr

January 2025

Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:

Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.

View Article and Find Full Text PDF

Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response.

Int J Biol Macromol

January 2025

Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China. Electronic address:

The non-specific lipid-transfer proteins (LTPs), particularly the glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs), play pivotal roles in various plant physiological functions, particularly in the context of environmental stress adaptation. Despite their importance, LTPGs in willow (Salix matsudana), an ecologically and economically important species, remains poorly understood. This study systematically identified and characterized 30 SmLTPGs in the S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!