Setup and dosimetry for exposure of human skin in vivo to RF-EMF at 900 MHz.

Bioelectromagnetics

STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland.

Published: April 2008

The aim of this study was a dosimetrical analysis of an experimental setup used in the exposure of 10 female volunteers to GSM 900 radiation. The exposure was carried out by irradiating a small region of the right forearms of the volunteers for 1 h, after which biopsies were taken from the exposed skin for protein analysis. The source of irradiation was a half-wave dipole fed with a computer controlled GSM phone. The specific absorption rate (SAR) induced in the skin biopsy was assessed by computer simulations. The numerical model of the arm consisted of a muscle tissue simulating cylinder covered with thin skin (1 mm) and fat (3 mm) layers. The simulation models were validated by measurements with a homogeneous cylindrical liquid phantom. The average SAR value in the biopsy was 1.3 W/kg and the estimated uncertainty +/-20% (K = 2). The main source of error was found to be variations in the distance of the forearm from the dipole (10 +/- 1 mm). Other significant sources of uncertainty are individual variations of the fat layer and arm thicknesses, and the uncertainty of radio frequency (RF) power measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.20383DOI Listing

Publication Analysis

Top Keywords

setup dosimetry
4
dosimetry exposure
4
exposure human
4
skin
4
human skin
4
skin vivo
4
vivo rf-emf
4
rf-emf 900
4
900 mhz
4
mhz aim
4

Similar Publications

A preliminary study was conducted using electronic portal imaging device (EPID) based dose verification in pre-treatment and in vivo dose reconstruction modes for breast cancer intensity-modulated radiation therapy (IMRT) technique with known repositioning set-up errors. For 43 IMRT plans, the set-up errors were determined from 43 sets of EPID images and 258 sets of cone beam computed tomography images. In-house developed Edose software was used to reconstruct the dose distribution using the pre-treatment and on-treatment (in vivo) EPID acquired fluence maps.

View Article and Find Full Text PDF
Article Synopsis
  • Proton Minibeam Radiation Therapy has been promising in enhancing treatment efficacy compared to traditional radiation, but more research into its biological mechanisms is needed.
  • A mechanical collimation setup was developed to produce 250µm minibeams with a 1000µm spacing, with optimization using Monte Carlo simulations conducted at various proton therapy sites.
  • Results showed a peak-to-valley dose ratio (PVDR) of 10 in Dresden and 14 in Seattle, with some discrepancies between dosimetry methods that can be addressed with correction factors.
View Article and Find Full Text PDF

Background: In Proton Therapy, the presence of implants along the beam path is known to potentially affect the dose distribution. The way such implants are managed in the planning process can vary in the different treatment planning systems (TPSs) and different centers. A specific validation procedure should be accomplished to verify the accuracy of TPS computation in these conditions and accept the applied process before treating patients.

View Article and Find Full Text PDF

Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions.

View Article and Find Full Text PDF

Background: While many clinical computed tomography (CT) protocols use helical scanning, the traditional method for measuring the volume CT Dose Index (CTDI) requires modifying the helical protocol to perform a single axial rotation. This modification can present challenges and mismatched settings across various scanner models.

Purpose: This study investigates the generalizability of a helical methodology for estimating CTDI across a diverse range of participants, CT scanner models, and protocol parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!