When imaging tendons and cartilage in a MRI scanner, an increase in signal intensity is observed when they are oriented at 55 degrees with respect to Bo (the "magic angle"). There is a clear clinical importance for considering this effect as part of the diagnosis of orthopaedic and other injury. Experimental studies of this phenomenon have been made harder by practical difficulties of tissue positioning and orientation in the confined environment of cylindrical scanners. An MRI compatible mechatronic system has been developed to position a variety of limbs inside the field of view of the scanner, to be used as a diagnostic and research tool. It is actuated with a novel pneumatic motor comprised of a heavily geared down air turbine, and is controlled in a closed loop using standard optical encoders. MR compatibility is demonstrated as well as the results of preliminary trials used to image the Achilles tendon of human volunteers at different orientations. A 4 to 13 fold increase in signal at the tendon is observed at the magic angle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-540-75759-7_73 | DOI Listing |
Materials (Basel)
December 2024
Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia.
Natural composites are emerging as promising alternative materials for 3D printing in biomedical applications due to their biocompatibility, sustainability, and unique mechanical properties. The use of natural composites offers several advantages, including reduced environmental impact, enhanced biodegradability, and improved tissue compatibility. These materials can be processed into filaments or resins suitable for various 3D printing techniques, such as fused deposition modeling (FDM).
View Article and Find Full Text PDFPhys Med Biol
January 2025
Schlegel Research Institute for Aging, University of Waterloo, 250 Laurelwood Drive, Waterloo, Ontario, N2L 3G1, CANADA.
As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.
View Article and Find Full Text PDFAdv Compos Hybrid Mater
November 2024
Department of Mechanical Engineering, Politecnico Di Milano, Milan, Italy.
Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last two decades, various categories of metal particles, i.
View Article and Find Full Text PDFSmall
December 2024
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China.
Uncontrolled hemorrhage, especially in non-compressible and deep wounds, remains a critical issue in emergency and surgical care. Existing hemostatic powders often lack rapid gelation, mechanical robustness, and adequate adherence, increasing the risk of rebleeding under high-pressure blood flow. To address these limitations, PQPP, a novel self-gelling hemostatic material composed of polyacrylamide/quaternized chitosan coacervates and polydopamine nanoparticles is developed.
View Article and Find Full Text PDFBioact Mater
February 2025
University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada.
Geometric and structural integrity often deteriorate in 3D printed cell-laden constructs over time due to cellular compaction and hydrogel shrinkage. This study introduces a new approach that synergizes the advantages of cell compatibility of biological hydrogels and mechanical stability of elastomeric polymers for structure fidelity maintenance upon stereolithography and extrusion 3D printing. Enabling this advance is the composite bioink, formulated by integrating elastomeric microparticles from poly(octamethylene maleate (anhydride) citrate) (POMaC) into biologically derived hydrogels (fibrin, gelatin methacryloyl (GelMA), and alginate).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!